Some Problems in the Theory of Ridge Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.

Sobre autores

S. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: konyagin@mi.ras.ru
Rússia, ul. Gubkina 8, Moscow, 119991

A. Kuleshov

Laboratory “Multidimensional Approximation and Applications,”

Email: konyagin@mi.ras.ru
Rússia, Moscow, 119991

V. Maiorov

Technion – Israel Institute of Technology

Email: konyagin@mi.ras.ru
Israel, Haifa, 32000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018