Some Problems in the Theory of Ridge Functions
- Авторы: Konyagin S.V.1, Kuleshov A.A.2, Maiorov V.E.3
-
Учреждения:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Laboratory “Multidimensional Approximation and Applications,”
- Technion – Israel Institute of Technology
- Выпуск: Том 301, № 1 (2018)
- Страницы: 144-169
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175568
- DOI: https://doi.org/10.1134/S0081543818040120
- ID: 175568
Цитировать
Аннотация
Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
Об авторах
S. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences
Автор, ответственный за переписку.
Email: konyagin@mi.ras.ru
Россия, ul. Gubkina 8, Moscow, 119991
A. Kuleshov
Laboratory “Multidimensional Approximation and Applications,”
Email: konyagin@mi.ras.ru
Россия, Moscow, 119991
V. Maiorov
Technion – Israel Institute of Technology
Email: konyagin@mi.ras.ru
Израиль, Haifa, 32000
Дополнительные файлы
