Some Problems in the Theory of Ridge Functions
- 作者: Konyagin S.V.1, Kuleshov A.A.2, Maiorov V.E.3
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Laboratory “Multidimensional Approximation and Applications,”
- Technion – Israel Institute of Technology
- 期: 卷 301, 编号 1 (2018)
- 页面: 144-169
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175568
- DOI: https://doi.org/10.1134/S0081543818040120
- ID: 175568
如何引用文章
详细
Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
作者简介
S. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: konyagin@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
A. Kuleshov
Laboratory “Multidimensional Approximation and Applications,”
Email: konyagin@mi.ras.ru
俄罗斯联邦, Moscow, 119991
V. Maiorov
Technion – Israel Institute of Technology
Email: konyagin@mi.ras.ru
以色列, Haifa, 32000
补充文件
