Some Problems in the Theory of Ridge Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.

作者简介

S. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: konyagin@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

A. Kuleshov

Laboratory “Multidimensional Approximation and Applications,”

Email: konyagin@mi.ras.ru
俄罗斯联邦, Moscow, 119991

V. Maiorov

Technion – Israel Institute of Technology

Email: konyagin@mi.ras.ru
以色列, Haifa, 32000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018