On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime
- Autores: Garaev M.Z.1
-
Afiliações:
- Centro de Ciencias Matemáticas
- Edição: Volume 303, Nº 1 (2018)
- Páginas: 50-57
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175661
- DOI: https://doi.org/10.1134/S0081543818080060
- ID: 175661
Citar
Resumo
Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x ∈ ℕ, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
Sobre autores
M. Garaev
Centro de Ciencias Matemáticas
Autor responsável pela correspondência
Email: garaev@matmor.unam.mx
México, Morelia, Michoacán, C.P. 58089
Arquivos suplementares
