On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).

Sobre autores

M. Garaev

Centro de Ciencias Matemáticas

Autor responsável pela correspondência
Email: garaev@matmor.unam.mx
México, Morelia, Michoacán, C.P. 58089

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018