On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).

作者简介

M. Garaev

Centro de Ciencias Matemáticas

编辑信件的主要联系方式.
Email: garaev@matmor.unam.mx
墨西哥, Morelia, Michoacán, C.P. 58089

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018