On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime
- 作者: Garaev M.Z.1
-
隶属关系:
- Centro de Ciencias Matemáticas
- 期: 卷 303, 编号 1 (2018)
- 页面: 50-57
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175661
- DOI: https://doi.org/10.1134/S0081543818080060
- ID: 175661
如何引用文章
详细
Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x ∈ ℕ, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
作者简介
M. Garaev
Centro de Ciencias Matemáticas
编辑信件的主要联系方式.
Email: garaev@matmor.unam.mx
墨西哥, Morelia, Michoacán, C.P. 58089
补充文件
