On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime
- Authors: Garaev M.Z.1
-
Affiliations:
- Centro de Ciencias Matemáticas
- Issue: Vol 303, No 1 (2018)
- Pages: 50-57
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175661
- DOI: https://doi.org/10.1134/S0081543818080060
- ID: 175661
Cite item
Abstract
Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x ∈ ℕ, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
About the authors
M. Z. Garaev
Centro de Ciencias Matemáticas
Author for correspondence.
Email: garaev@matmor.unam.mx
Mexico, Morelia, Michoacán, C.P. 58089
Supplementary files
