On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime
- Авторлар: Garaev M.Z.1
-
Мекемелер:
- Centro de Ciencias Matemáticas
- Шығарылым: Том 303, № 1 (2018)
- Беттер: 50-57
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175661
- DOI: https://doi.org/10.1134/S0081543818080060
- ID: 175661
Дәйексөз келтіру
Аннотация
Let \(\mathbb{F}_p\) be the field of residue classes modulo a large prime number p. We prove that if \(\mathcal{G}\) is a subgroup of the multiplicative group \(\mathbb{F}_p^*\) and if \(\mathcal{I} \subset \mathbb{F}_p\) is an arithmetic progression, then \(|\mathcal{G} \cap \mathcal{I}| = (1 + o(1))|\mathcal{G}|\mathcal{I}|/p + R\), where \(|R| < (|\mathcal{I}|^{1/2} + |\mathcal{G}|^{1/2} + |\mathcal{I}|^{1/2}|\mathcal{G}|^{3/8}p^{-1/8})p^{o(1)}\). We use this bound to show that the number of solutions to the congruence xn ≡ λ (mod p), x ∈ ℕ, L < x < L + p/n, is at most p1/3−1/390+o(1) uniformly over positive integers n, λ and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
Авторлар туралы
M. Garaev
Centro de Ciencias Matemáticas
Хат алмасуға жауапты Автор.
Email: garaev@matmor.unam.mx
Мексика, Morelia, Michoacán, C.P. 58089
Қосымша файлдар
