Термодинамические свойства растворов в системе H2O–Na2SO4–Al2(SO4)3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статическим методом измерено давление пара в системе H2O–Na2SO4–Al2(SO4)3 при 15, 25 и 35°C. Методом точки росы исследованы термодинамические свойства растворов в системах H2O–Al2(SO4)3 и H2O–Na2SO4–Al2(SO4)3 при 25 и 50°С. Получен набор параметров модели Питцера–Симонсона–Клегга, адекватно описывающий парожидкостные равновесия в системах H2O–Al2(SO4)3 и H2O–Na2SO4–Al2(SO4)3 в диапазоне от 15 до 50°С.

Об авторах

А. В. Нестеров

Университет МГУ-ППИ в Шэньчжэне, факультет наук о материалах; Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: kovalenko@td.chem.msu.ru
Китай, 518172, провинция Гуандун, Шэньчжэнь, , ул. Гоцзидасюеюань, 1, Даюньсиньчэн, район Лунган; Россия, 119991, Москва, Ленинские горы, 1

А. М. Демченко

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: kovalenko@td.chem.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

А. А. Поташников

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: kovalenko@td.chem.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

А. Л. Восков

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: kovalenko@td.chem.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

Н. А. Коваленко

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: kovalenko@td.chem.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

И. А. Успенская

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Автор, ответственный за переписку.
Email: kovalenko@td.chem.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Xu L., Dai L., Yin L. et al. // Energy Build. 2020. V. 226. P. 110398. https://doi.org/10.1016/j.enbuild.2020.110398
  2. Fernandes B.C.N., Paulo B.B., Guimarães M.C. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 3. P. 2309. https://doi.org/10.1111/1541-4337.12933
  3. Yang K., Venkataraman M., Zhang X. et al. // J. Mater. Sci. 2022. V. 57. № 2. P. 798. https://doi.org/10.1007/s10853-021-06641-3
  4. Guo M., Liang M., Jiao Y. et al. // Constr. Build. Mater. 2020. V. 258. P. 119565. https://doi.org/10.1016/j.conbuildmat.2020.119565
  5. Liu C., Xu D., Weng J. et al. // Materials. 2020. V. 13. № 20. P. 4622. https://doi.org/10.3390/ma13204622
  6. Kenisarin M.M. // Sol. Energy. 2014. V. 107. P. 553. https://doi.org/10.1016/j.solener.2014.05.001
  7. Sharma R.K., Ganesan P., Tyagi V.V. et al. // Energy Convers. Manag. 2015. V. 95. P. 193. https://doi.org/10.1016/j.enconman.2015.01.084
  8. Magendran S.S., Khan F.S.A., Mubarak N.M. et al. // Nano-Structures Nano-Objects. 2019. V. 20. P. 100 399. https://doi.org/10.1016/j.nanoso.2019.100399
  9. Cabeza L.F., Castell A., Barreneche C. et al. // Renew. Sustain. Energy Rev. 2011. V. 15. № 3. P. 1675. https://doi.org/10.1016/j.rser.2010.11.018
  10. Kistanova N.S., Mukminova A.R., Koneva I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1736. https://doi.org/10.1134/S0036023621110127
  11. Marcus Y., Minevich A., Ben-Dor L. // Thermochim. Acta. 2004. V. 412. № 1–2. P. 163. https://doi.org/10.1016/j.tca.2003.09.019
  12. Marcus Y. // J. Solution Chem. 2005. V. 34. № 3. P. 307. https://doi.org/10.1007/s10953-005-3051-2
  13. Liu Y., Yang Y. // Appl. Therm. Eng. 2017. V. 112. P. 606. https://doi.org/10.1016/j.applthermaleng.2016.10.146
  14. Graham M., Coca-Clemente J.A., Shchukina E. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13683. https://doi.org/10.1039/C7TA02494K
  15. Pichandi R., Murugavel Kulandaivelu K., Alagar K. et al. // Energy Sources, Part A Recover. Util. Environ. Eff. 2020. P. 1. https://doi.org/10.1080/15567036.2020.1817185
  16. Khan A.R., Khan M., Rehman A.U. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1125. https://doi.org/10.1134/S0036023622070129
  17. Marion G.M., Farren R.E. // Geochim. Cosmochim. Acta. 1999. V. 63. № 9. P. 1305. https://doi.org/10.1016/S0016-7037(99)00102-7
  18. Toner J.D., Catling D.C. // J. Chem. Eng. Data 2017. V. 62. № 10. P. 3151. https://doi.org/10.1021/acs.jced.7b00265
  19. Yan Y., Chen C.-C. // Fluid Phase Equilib. 2011. V. 306. № 2. P. 149. https://doi.org/10.1016/j.fluid.2011.03.023
  20. Hingerl F.F., Wagner T., Kulik D.A. et al. // Chem. Geol. 2014. V. 381. P. 78. https://doi.org/10.1016/j.chemgeo.2014.05.007
  21. Li D., Zeng D., Yin X. et al. // Calphad. 2018. V. 60. P. 163. https://doi.org/10.1016/j.calphad.2018.01.002
  22. Robinson R.A. // J. Am. Chem. Soc. 1937. V. 59. № 1. P. 84. https://doi.org/10.1021/ja01280a019
  23. Burge D.E. // J. Phys. Chem. 1963. V. 67. № 12. P. 2590. https://doi.org/10.1021/j100806a021
  24. Apelblat A., Korin E. // J. Chem. Thermodyn. 2002. V. 34. № 12. P. 1919. https://doi.org/10.1016/S0021-9614(02)00188-X
  25. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонетных растворов неорганических веществ. М.: Химия, 1988. 416 с.
  26. Taylor D., Bassett H. // J. Chem. Soc. 1952. V. 1. P. 4431. https://doi.org/10.1039/JR9520004431
  27. Smith N.O., Walsh P.N. // J. Am. Chem. Soc. 1954. V. 76. № 8. P. 2054. https://doi.org/10.1021/ja01637a007
  28. Hill A.E., Kaplan N. // J. Am. Chem. Soc. 1938. V. 60. № 3. P. 550. https://doi.org/10.1021/ja01270a013
  29. Henry J.L., King G.B. // J. Am. Chem. Soc. 1949. V. 71. № 4. P. 1142. https://doi.org/10.1021/ja01172a002
  30. Kremann R., Huttinger K. // Jahrb. K. K. Geol., Reichsan. 1908. V. 58. P. 637.
  31. Skarulis J.A., Horan H.A., Maleeny R. // J. Am. Chem. Soc. 1954. V. 76. № 5. P. 1450. https://doi.org/10.1021/ja01634a096
  32. Horan H.A., Skarulis J.A. // J. Am. Chem. Soc. 1939. V. 61. № 10. P. 2689. https://doi.org/10.1021/ja01265a032
  33. Christov C. // Calphad 2001. V. 25. № 3. P. 445. https://doi.org/10.1016/S0364-5916(01)00063-3
  34. Thomsen K. Modeling systems containing aluminum in addition to H2O–(K+, Na+, H+, Ca2+)–(F–, Cl–, OH–, CO2, H3PO4, ), Søborg: Aqueous Solutions Aps, 2009, 23 p.
  35. Wang P., Anderko A., Young R.D. et al. A comprehensive model for calculating phase equilibria and thermophysical properties of electrolyte systems. N.J.: OLI Systems Inc., 2008. 15 p.
  36. Dobbins J.T., Addleston J.A. // J. Phys. Chem. 1935. V. 39. № 5. P. 637. https://doi.org/10.1021/j150365a007
  37. Dobbins J.T., Byrd R.M. // J. Phys. Chem. 1931. V. 35. № 12. P. 3673. https://doi.org/10.1021/j150330a018
  38. Лайнер А.И., Пустильник Г.Л., Пустильник А.И. // Журн. прикл. химии. 1970. Т. 43. № 8. С. 1970.
  39. Mousseron M.M., Gravier P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1382.
  40. Christov C. // Calphad. 2002. V. 26. № 1. P. 85. https://doi.org/10.1016/S0364-5916(02)00026-3
  41. Kovalenko N.A., Pustovgar E.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2013. V. 58. № 1. P. 159. https://doi.org/10.1021/je301087w
  42. Kosova D.A., Voskov A.L., Kovalenko N.A. et al. // Fluid Phase Equilib. 2016. V. 425. P. 312. https://doi.org/10.1016/j.fluid.2016.06.021
  43. Baes C.F., Mesmer R.E. The Hydrolysis of Cations. N.Y.: John Wiley & Sons, Inc, 1976. 489 p.
  44. Martin R.B. // J. Inorg. Biochem. 1991. V. 44. № 2. P. 141. https://doi.org/10.1016/0162-0134(91)84026-6
  45. Фадеева В.И., Шеловцова Т.Н., Иванов В.М. Основы аналитической химии. Практическое руководство / Под ред. Золотова Ю.А. М.: Высш. шк., 2003. 463 с.
  46. Hillebrand W.F., Lundell G.E.F. // Applied inorganic analysis: with special reference to the analysis of metals, minerals, and rocks. N.Y.: John Wiley & Sons, Inc, 1953. 1034 p.
  47. Clegg S.L., Pitzer K.S. // J. Phys. Chem. 1992. V. 96. № 8. P. 3513. https://doi.org/10.1021/j100187a061
  48. Clegg S.L., Pitzer K.S., Brimblecombe P. // J. Phys. Chem. 1992. V. 96. № 23. P. 9470. https://doi.org/10.1021/j100202a074
  49. Novikov A.A., Dzuban A.V., Kovalenko N.A. et al. // J. Chem. Eng. Data 2021. V. 66. № 5. P. 1839. https://doi.org/10.1021/acs.jced.1c00102
  50. Dzuban A.V., Novikov A.A., Nesterov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. https://doi.org/10.31857/S0044457X22601419

© А.В. Нестеров, А.М. Демченко, А.А. Поташников, А.Л. Восков, Н.А. Коваленко, И.А. Успенская, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах