Thermodynamic Properties of Solutions in the H2O–Na2SO4–Al2(SO4)3 System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The vapor pressure in the H2O–Na2SO4–Al2(SO4)3 system at 15, 25, and 35°C was measured by a static method. The vapor pressure in the H2O–Al2(SO4)3 and H2O–Na2SO4–Al2(SO4)3 systems at 25 and 50°C was measured by the dew point method. A set of parameters of the Pitzer–Simonson–Clegg (PSC) model was determined to describe adequately vapor– liquid equilibria in the H2O–Al2(SO4)3 and H2O–Na2SO4–Al2(SO4)3 systems in the temperature range from 15 to 50°С.

About the authors

A. V. Nesterov

Faculty of Materials Science, Shenzhen MSU-BIT University; Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
518172, Shenzhen, Guangdong Province, People’s Republic of China; 119991, Moscow, Russia

A. M. Demchenko

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

A. A. Potashnikov

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

A. L. Voskov

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

N. A. Kovalenko

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

I. A. Uspenskaya

Department of Chemistry, Moscow State University

Author for correspondence.
Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

References

  1. Xu L., Dai L., Yin L. et al. // Energy Build. 2020. V. 226. P. 110398. https://doi.org/10.1016/j.enbuild.2020.110398
  2. Fernandes B.C.N., Paulo B.B., Guimarães M.C. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 3. P. 2309. https://doi.org/10.1111/1541-4337.12933
  3. Yang K., Venkataraman M., Zhang X. et al. // J. Mater. Sci. 2022. V. 57. № 2. P. 798. https://doi.org/10.1007/s10853-021-06641-3
  4. Guo M., Liang M., Jiao Y. et al. // Constr. Build. Mater. 2020. V. 258. P. 119565. https://doi.org/10.1016/j.conbuildmat.2020.119565
  5. Liu C., Xu D., Weng J. et al. // Materials. 2020. V. 13. № 20. P. 4622. https://doi.org/10.3390/ma13204622
  6. Kenisarin M.M. // Sol. Energy. 2014. V. 107. P. 553. https://doi.org/10.1016/j.solener.2014.05.001
  7. Sharma R.K., Ganesan P., Tyagi V.V. et al. // Energy Convers. Manag. 2015. V. 95. P. 193. https://doi.org/10.1016/j.enconman.2015.01.084
  8. Magendran S.S., Khan F.S.A., Mubarak N.M. et al. // Nano-Structures Nano-Objects. 2019. V. 20. P. 100 399. https://doi.org/10.1016/j.nanoso.2019.100399
  9. Cabeza L.F., Castell A., Barreneche C. et al. // Renew. Sustain. Energy Rev. 2011. V. 15. № 3. P. 1675. https://doi.org/10.1016/j.rser.2010.11.018
  10. Kistanova N.S., Mukminova A.R., Koneva I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1736. https://doi.org/10.1134/S0036023621110127
  11. Marcus Y., Minevich A., Ben-Dor L. // Thermochim. Acta. 2004. V. 412. № 1–2. P. 163. https://doi.org/10.1016/j.tca.2003.09.019
  12. Marcus Y. // J. Solution Chem. 2005. V. 34. № 3. P. 307. https://doi.org/10.1007/s10953-005-3051-2
  13. Liu Y., Yang Y. // Appl. Therm. Eng. 2017. V. 112. P. 606. https://doi.org/10.1016/j.applthermaleng.2016.10.146
  14. Graham M., Coca-Clemente J.A., Shchukina E. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13683. https://doi.org/10.1039/C7TA02494K
  15. Pichandi R., Murugavel Kulandaivelu K., Alagar K. et al. // Energy Sources, Part A Recover. Util. Environ. Eff. 2020. P. 1. https://doi.org/10.1080/15567036.2020.1817185
  16. Khan A.R., Khan M., Rehman A.U. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1125. https://doi.org/10.1134/S0036023622070129
  17. Marion G.M., Farren R.E. // Geochim. Cosmochim. Acta. 1999. V. 63. № 9. P. 1305. https://doi.org/10.1016/S0016-7037(99)00102-7
  18. Toner J.D., Catling D.C. // J. Chem. Eng. Data 2017. V. 62. № 10. P. 3151. https://doi.org/10.1021/acs.jced.7b00265
  19. Yan Y., Chen C.-C. // Fluid Phase Equilib. 2011. V. 306. № 2. P. 149. https://doi.org/10.1016/j.fluid.2011.03.023
  20. Hingerl F.F., Wagner T., Kulik D.A. et al. // Chem. Geol. 2014. V. 381. P. 78. https://doi.org/10.1016/j.chemgeo.2014.05.007
  21. Li D., Zeng D., Yin X. et al. // Calphad. 2018. V. 60. P. 163. https://doi.org/10.1016/j.calphad.2018.01.002
  22. Robinson R.A. // J. Am. Chem. Soc. 1937. V. 59. № 1. P. 84. https://doi.org/10.1021/ja01280a019
  23. Burge D.E. // J. Phys. Chem. 1963. V. 67. № 12. P. 2590. https://doi.org/10.1021/j100806a021
  24. Apelblat A., Korin E. // J. Chem. Thermodyn. 2002. V. 34. № 12. P. 1919. https://doi.org/10.1016/S0021-9614(02)00188-X
  25. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонетных растворов неорганических веществ. М.: Химия, 1988. 416 с.
  26. Taylor D., Bassett H. // J. Chem. Soc. 1952. V. 1. P. 4431. https://doi.org/10.1039/JR9520004431
  27. Smith N.O., Walsh P.N. // J. Am. Chem. Soc. 1954. V. 76. № 8. P. 2054. https://doi.org/10.1021/ja01637a007
  28. Hill A.E., Kaplan N. // J. Am. Chem. Soc. 1938. V. 60. № 3. P. 550. https://doi.org/10.1021/ja01270a013
  29. Henry J.L., King G.B. // J. Am. Chem. Soc. 1949. V. 71. № 4. P. 1142. https://doi.org/10.1021/ja01172a002
  30. Kremann R., Huttinger K. // Jahrb. K. K. Geol., Reichsan. 1908. V. 58. P. 637.
  31. Skarulis J.A., Horan H.A., Maleeny R. // J. Am. Chem. Soc. 1954. V. 76. № 5. P. 1450. https://doi.org/10.1021/ja01634a096
  32. Horan H.A., Skarulis J.A. // J. Am. Chem. Soc. 1939. V. 61. № 10. P. 2689. https://doi.org/10.1021/ja01265a032
  33. Christov C. // Calphad 2001. V. 25. № 3. P. 445. https://doi.org/10.1016/S0364-5916(01)00063-3
  34. Thomsen K. Modeling systems containing aluminum in addition to H2O–(K+, Na+, H+, Ca2+)–(F–, Cl–, OH–, CO2, H3PO4, ), Søborg: Aqueous Solutions Aps, 2009, 23 p.
  35. Wang P., Anderko A., Young R.D. et al. A comprehensive model for calculating phase equilibria and thermophysical properties of electrolyte systems. N.J.: OLI Systems Inc., 2008. 15 p.
  36. Dobbins J.T., Addleston J.A. // J. Phys. Chem. 1935. V. 39. № 5. P. 637. https://doi.org/10.1021/j150365a007
  37. Dobbins J.T., Byrd R.M. // J. Phys. Chem. 1931. V. 35. № 12. P. 3673. https://doi.org/10.1021/j150330a018
  38. Лайнер А.И., Пустильник Г.Л., Пустильник А.И. // Журн. прикл. химии. 1970. Т. 43. № 8. С. 1970.
  39. Mousseron M.M., Gravier P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1382.
  40. Christov C. // Calphad. 2002. V. 26. № 1. P. 85. https://doi.org/10.1016/S0364-5916(02)00026-3
  41. Kovalenko N.A., Pustovgar E.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2013. V. 58. № 1. P. 159. https://doi.org/10.1021/je301087w
  42. Kosova D.A., Voskov A.L., Kovalenko N.A. et al. // Fluid Phase Equilib. 2016. V. 425. P. 312. https://doi.org/10.1016/j.fluid.2016.06.021
  43. Baes C.F., Mesmer R.E. The Hydrolysis of Cations. N.Y.: John Wiley & Sons, Inc, 1976. 489 p.
  44. Martin R.B. // J. Inorg. Biochem. 1991. V. 44. № 2. P. 141. https://doi.org/10.1016/0162-0134(91)84026-6
  45. Фадеева В.И., Шеловцова Т.Н., Иванов В.М. Основы аналитической химии. Практическое руководство / Под ред. Золотова Ю.А. М.: Высш. шк., 2003. 463 с.
  46. Hillebrand W.F., Lundell G.E.F. // Applied inorganic analysis: with special reference to the analysis of metals, minerals, and rocks. N.Y.: John Wiley & Sons, Inc, 1953. 1034 p.
  47. Clegg S.L., Pitzer K.S. // J. Phys. Chem. 1992. V. 96. № 8. P. 3513. https://doi.org/10.1021/j100187a061
  48. Clegg S.L., Pitzer K.S., Brimblecombe P. // J. Phys. Chem. 1992. V. 96. № 23. P. 9470. https://doi.org/10.1021/j100202a074
  49. Novikov A.A., Dzuban A.V., Kovalenko N.A. et al. // J. Chem. Eng. Data 2021. V. 66. № 5. P. 1839. https://doi.org/10.1021/acs.jced.1c00102
  50. Dzuban A.V., Novikov A.A., Nesterov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. https://doi.org/10.31857/S0044457X22601419

Supplementary files


Copyright (c) 2023 А.В. Нестеров, А.М. Демченко, А.А. Поташников, А.Л. Восков, Н.А. Коваленко, И.А. Успенская

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».