Thermodynamic Properties of Solutions in the H2O–Na2SO4–Al2(SO4)3 System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The vapor pressure in the H2O–Na2SO4–Al2(SO4)3 system at 15, 25, and 35°C was measured by a static method. The vapor pressure in the H2O–Al2(SO4)3 and H2O–Na2SO4–Al2(SO4)3 systems at 25 and 50°C was measured by the dew point method. A set of parameters of the Pitzer–Simonson–Clegg (PSC) model was determined to describe adequately vapor– liquid equilibria in the H2O–Al2(SO4)3 and H2O–Na2SO4–Al2(SO4)3 systems in the temperature range from 15 to 50°С.

Sobre autores

A. Nesterov

Faculty of Materials Science, Shenzhen MSU-BIT University; Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
518172, Shenzhen, Guangdong Province, People’s Republic of China; 119991, Moscow, Russia

A. Demchenko

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

A. Potashnikov

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

A. Voskov

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

N. Kovalenko

Department of Chemistry, Moscow State University

Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

I. Uspenskaya

Department of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: kovalenko@td.chem.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Xu L., Dai L., Yin L. et al. // Energy Build. 2020. V. 226. P. 110398. https://doi.org/10.1016/j.enbuild.2020.110398
  2. Fernandes B.C.N., Paulo B.B., Guimarães M.C. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 3. P. 2309. https://doi.org/10.1111/1541-4337.12933
  3. Yang K., Venkataraman M., Zhang X. et al. // J. Mater. Sci. 2022. V. 57. № 2. P. 798. https://doi.org/10.1007/s10853-021-06641-3
  4. Guo M., Liang M., Jiao Y. et al. // Constr. Build. Mater. 2020. V. 258. P. 119565. https://doi.org/10.1016/j.conbuildmat.2020.119565
  5. Liu C., Xu D., Weng J. et al. // Materials. 2020. V. 13. № 20. P. 4622. https://doi.org/10.3390/ma13204622
  6. Kenisarin M.M. // Sol. Energy. 2014. V. 107. P. 553. https://doi.org/10.1016/j.solener.2014.05.001
  7. Sharma R.K., Ganesan P., Tyagi V.V. et al. // Energy Convers. Manag. 2015. V. 95. P. 193. https://doi.org/10.1016/j.enconman.2015.01.084
  8. Magendran S.S., Khan F.S.A., Mubarak N.M. et al. // Nano-Structures Nano-Objects. 2019. V. 20. P. 100 399. https://doi.org/10.1016/j.nanoso.2019.100399
  9. Cabeza L.F., Castell A., Barreneche C. et al. // Renew. Sustain. Energy Rev. 2011. V. 15. № 3. P. 1675. https://doi.org/10.1016/j.rser.2010.11.018
  10. Kistanova N.S., Mukminova A.R., Koneva I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1736. https://doi.org/10.1134/S0036023621110127
  11. Marcus Y., Minevich A., Ben-Dor L. // Thermochim. Acta. 2004. V. 412. № 1–2. P. 163. https://doi.org/10.1016/j.tca.2003.09.019
  12. Marcus Y. // J. Solution Chem. 2005. V. 34. № 3. P. 307. https://doi.org/10.1007/s10953-005-3051-2
  13. Liu Y., Yang Y. // Appl. Therm. Eng. 2017. V. 112. P. 606. https://doi.org/10.1016/j.applthermaleng.2016.10.146
  14. Graham M., Coca-Clemente J.A., Shchukina E. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13683. https://doi.org/10.1039/C7TA02494K
  15. Pichandi R., Murugavel Kulandaivelu K., Alagar K. et al. // Energy Sources, Part A Recover. Util. Environ. Eff. 2020. P. 1. https://doi.org/10.1080/15567036.2020.1817185
  16. Khan A.R., Khan M., Rehman A.U. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1125. https://doi.org/10.1134/S0036023622070129
  17. Marion G.M., Farren R.E. // Geochim. Cosmochim. Acta. 1999. V. 63. № 9. P. 1305. https://doi.org/10.1016/S0016-7037(99)00102-7
  18. Toner J.D., Catling D.C. // J. Chem. Eng. Data 2017. V. 62. № 10. P. 3151. https://doi.org/10.1021/acs.jced.7b00265
  19. Yan Y., Chen C.-C. // Fluid Phase Equilib. 2011. V. 306. № 2. P. 149. https://doi.org/10.1016/j.fluid.2011.03.023
  20. Hingerl F.F., Wagner T., Kulik D.A. et al. // Chem. Geol. 2014. V. 381. P. 78. https://doi.org/10.1016/j.chemgeo.2014.05.007
  21. Li D., Zeng D., Yin X. et al. // Calphad. 2018. V. 60. P. 163. https://doi.org/10.1016/j.calphad.2018.01.002
  22. Robinson R.A. // J. Am. Chem. Soc. 1937. V. 59. № 1. P. 84. https://doi.org/10.1021/ja01280a019
  23. Burge D.E. // J. Phys. Chem. 1963. V. 67. № 12. P. 2590. https://doi.org/10.1021/j100806a021
  24. Apelblat A., Korin E. // J. Chem. Thermodyn. 2002. V. 34. № 12. P. 1919. https://doi.org/10.1016/S0021-9614(02)00188-X
  25. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонетных растворов неорганических веществ. М.: Химия, 1988. 416 с.
  26. Taylor D., Bassett H. // J. Chem. Soc. 1952. V. 1. P. 4431. https://doi.org/10.1039/JR9520004431
  27. Smith N.O., Walsh P.N. // J. Am. Chem. Soc. 1954. V. 76. № 8. P. 2054. https://doi.org/10.1021/ja01637a007
  28. Hill A.E., Kaplan N. // J. Am. Chem. Soc. 1938. V. 60. № 3. P. 550. https://doi.org/10.1021/ja01270a013
  29. Henry J.L., King G.B. // J. Am. Chem. Soc. 1949. V. 71. № 4. P. 1142. https://doi.org/10.1021/ja01172a002
  30. Kremann R., Huttinger K. // Jahrb. K. K. Geol., Reichsan. 1908. V. 58. P. 637.
  31. Skarulis J.A., Horan H.A., Maleeny R. // J. Am. Chem. Soc. 1954. V. 76. № 5. P. 1450. https://doi.org/10.1021/ja01634a096
  32. Horan H.A., Skarulis J.A. // J. Am. Chem. Soc. 1939. V. 61. № 10. P. 2689. https://doi.org/10.1021/ja01265a032
  33. Christov C. // Calphad 2001. V. 25. № 3. P. 445. https://doi.org/10.1016/S0364-5916(01)00063-3
  34. Thomsen K. Modeling systems containing aluminum in addition to H2O–(K+, Na+, H+, Ca2+)–(F–, Cl–, OH–, CO2, H3PO4, ), Søborg: Aqueous Solutions Aps, 2009, 23 p.
  35. Wang P., Anderko A., Young R.D. et al. A comprehensive model for calculating phase equilibria and thermophysical properties of electrolyte systems. N.J.: OLI Systems Inc., 2008. 15 p.
  36. Dobbins J.T., Addleston J.A. // J. Phys. Chem. 1935. V. 39. № 5. P. 637. https://doi.org/10.1021/j150365a007
  37. Dobbins J.T., Byrd R.M. // J. Phys. Chem. 1931. V. 35. № 12. P. 3673. https://doi.org/10.1021/j150330a018
  38. Лайнер А.И., Пустильник Г.Л., Пустильник А.И. // Журн. прикл. химии. 1970. Т. 43. № 8. С. 1970.
  39. Mousseron M.M., Gravier P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1382.
  40. Christov C. // Calphad. 2002. V. 26. № 1. P. 85. https://doi.org/10.1016/S0364-5916(02)00026-3
  41. Kovalenko N.A., Pustovgar E.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2013. V. 58. № 1. P. 159. https://doi.org/10.1021/je301087w
  42. Kosova D.A., Voskov A.L., Kovalenko N.A. et al. // Fluid Phase Equilib. 2016. V. 425. P. 312. https://doi.org/10.1016/j.fluid.2016.06.021
  43. Baes C.F., Mesmer R.E. The Hydrolysis of Cations. N.Y.: John Wiley & Sons, Inc, 1976. 489 p.
  44. Martin R.B. // J. Inorg. Biochem. 1991. V. 44. № 2. P. 141. https://doi.org/10.1016/0162-0134(91)84026-6
  45. Фадеева В.И., Шеловцова Т.Н., Иванов В.М. Основы аналитической химии. Практическое руководство / Под ред. Золотова Ю.А. М.: Высш. шк., 2003. 463 с.
  46. Hillebrand W.F., Lundell G.E.F. // Applied inorganic analysis: with special reference to the analysis of metals, minerals, and rocks. N.Y.: John Wiley & Sons, Inc, 1953. 1034 p.
  47. Clegg S.L., Pitzer K.S. // J. Phys. Chem. 1992. V. 96. № 8. P. 3513. https://doi.org/10.1021/j100187a061
  48. Clegg S.L., Pitzer K.S., Brimblecombe P. // J. Phys. Chem. 1992. V. 96. № 23. P. 9470. https://doi.org/10.1021/j100202a074
  49. Novikov A.A., Dzuban A.V., Kovalenko N.A. et al. // J. Chem. Eng. Data 2021. V. 66. № 5. P. 1839. https://doi.org/10.1021/acs.jced.1c00102
  50. Dzuban A.V., Novikov A.A., Nesterov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. https://doi.org/10.31857/S0044457X22601419

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2KB)
3.

Baixar (2KB)
4.

Baixar (2KB)
5.

Baixar (75KB)
6.

Baixar (100KB)
7.

Baixar (2KB)
8.

Baixar (2KB)
9.

Baixar (2KB)
10.

Baixar (2KB)
11.

Baixar (100KB)

Declaração de direitos autorais © А.В. Нестеров, А.М. Демченко, А.А. Поташников, А.Л. Восков, Н.А. Коваленко, И.А. Успенская, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies