Влияние Fe3O4 на физико-химические и фотокаталитические свойства наноразмерного титаната бария

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложена методика синтеза нанокомпозита на основе титаната бария, модифицированного добавками нанодисперсного магнетита, золь-гель методом в среде уксусной кислоты с последующим отжигом при температуре 800°С. Физико-химический анализ продуктов синтеза показал, что фазой матрицы после отжига является титанат бария с примесью карбоната бария, а помимо магнетита содержатся незначительные включения гематита и вюстита. С помощью энергодисперсионной рентгеновской спектроскопии определен элементный состав наноразмерных образцов. Показано влияние концентрации вводимого Fe3O4 на морфологический и фазовый состав композитов. Методом низкотемпературной адсорбции–десорбции азота определена удельная площадь поверхности и тип пористости прокаленных образцов. Изучено влияние порошков BaTiO3, BaTiO3/Fe3O4-1% и BaTiO3/Fe3O4‑10% на адсорбционную способность и фотокаталитическую активность в процессе деколорирования красителя родамина Б из водного раствора в темноте, а также под действием ультрафиолета. Кинетика адсорбции в темновой области и фотокаталитического разложения под действием ультрафиолета красителя родамина Б в водной суспензии полученных композитов проанализирована с помощью кинетических моделей псевдопервого и псевдовторого порядка.

Об авторах

К. В. Иванов

Институт химии растворов им. Г.А. Крестова РАН

Email: ivk@isc-ras.ru
Россия, 153045, Иваново, ул. Академическая, 1

А. В. Плотвина

Ивановский государственный химико-технологический университет

Email: ivk@isc-ras.ru
Россия, 153000, Иваново, Шереметевский пр-т, 7

А. В. Агафонов

Институт химии растворов им. Г.А. Крестова РАН

Автор, ответственный за переписку.
Email: ivk@isc-ras.ru
Россия, 153045, Иваново, ул. Академическая, 1

Список литературы

  1. Drdlik D., Marak V., Maca K. et al. // Ceram. Int. 2022. V. 48. Issue 17. P. 24599. https://doi.org/10.1016/j.ceramint.2022.05.105
  2. Sasikumar S., Saravanakumar S., Asath Bahadur S. et al. // Optik (Stuttg). 2020. V. 206. P. 163752. https://doi.org/10.1016/j.ijleo.2019.163752
  3. Solís R.R., Bedia J., Rodríguez J.J. et al. // Chem. Eng. J. 2021. V. 409. P. 128110. https://doi.org/10.1016/j.cej.2020.128110
  4. Su Y.P., Sim L.N., Coster H.G.L. et al. // J. Memb. Sci. 2021. V. 640. P. 119861. https://doi.org/10.1016/j.memsci.2021.119861
  5. Ravanamma R., Muralidhara Reddy K., Venkata Krishnaiah K. et al. // Mater. Today Proc. 2021. V. 46. P. 259. https://doi.org/10.1016/j.matpr.2020.07.646
  6. Sandi D., Supriyanto A., Anif et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 107. P. 012069. https://doi.org/10.1088/1757-899X/107/1/012069
  7. Dang N.V., Dung N.T., Phong P.T. et al. // Phys. B: Condens. Matter. 2015. V. 457. P. 103. https://doi.org/10.1016/j.physb.2014.09.046
  8. Lal M., Sharma P., Ram C. // Optik (Stuttg). 2021. V. 241. P. 166934. https://doi.org/10.1016/j.ijleo.2021.166934
  9. Senthilkumar P., Jency D.A., Kavinkumar T. et al. // ACS Sustain. Chem. Eng. 2019. P. Acssuschemeng.9b00679. https://doi.org/10.1021/acssuschemeng.9b00679
  10. Phoon B.L., Lai C.W., Juan J.C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 28. P. 14316. https://doi.org/10.1016/j.ijhydene.2019.01.166
  11. Wang W.P., Yang H., Xian T. et al. // Adv. Sci. Eng. Med. 2012. V. 4. № 6. P. 479. https://doi.org/10.1166/asem.2012.1215
  12. Thamima M., Andou Y., Karuppuchamy S. // Ceram. Int. 2017. V. 43. № 1. P. 556. https://doi.org/10.1016/j.ceramint.2016.09.194
  13. Lee W.W., Chung W.-H., Huang W.-S. et al. // J. Taiwan Inst. Chem. Eng. 2013. V. 44. № 4. P. 660. https://doi.org/10.1016/j.jtice.2013.01.005
  14. Jiang X., Wang H., Wang X. et al. // Sol. Energy. 2021. V. 224. P. 455. https://doi.org/10.1016/j.solener.2021.06.032
  15. Tomar R., Prajapati R., Verma S. et al. // Mater. Today Proc. 2021. V. 34. P. 608. https://doi.org/10.1016/j.matpr.2020.01.543
  16. Liu K., Mi L., Wang H. et al. // Ceram. Int. 2021. V. 47. № 15. P. 22055. https://doi.org/10.1016/j.ceramint.2021.04.226
  17. Mohan H., Ramasamy M., Ramalingam V. et al. // J. Hazard. Mater. 2021. V. 412. P. 125330. https://doi.org/10.1016/j.jhazmat.2021.125330
  18. Rocha V.M. da S., Pereira M. de G., Teles L.R. et al. // Mater. Sci. Eng. B. 2014. V. 185. P. 13. https://doi.org/10.1016/j.mseb.2014.02.004
  19. Niculescu A.-G., Chircov C., Grumezescu A.M. // Methods. 2022. V. 199. P. 16. https://doi.org/10.1016/j.ymeth.2021.04.018
  20. Landfester K., Ramrez L.P. // J. Phys. Condens. Matter. 2003. V. 15. № 15. P. S1345. https://doi.org/10.1088/0953-8984/15/15/304
  21. Mishra P., Patnaik S., Parida K. // Catal. Sci. Technol. 2019. V. 9. № 4. P. 916. https://doi.org/10.1039/c8cy02462f
  22. Evdokimova O.L., Fedulova (Savicheva) A.D., Evdokimova A.V. et al. // Inorg. Mater. Appl. Res. 2020. V. 11. № 2. P. 371. https://doi.org/10.1134/S2075113320020100
  23. Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафо-нов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
  24. Shendy S.A., Shahverdizadeh G.H., Babazadeh M. et al. // Silicon. 2020. V. 12. № 7. P. 1735. https://doi.org/10.1007/s12633-019-00252-z
  25. Bennett J.A., Parlett C.M.A., Isaacs M.A. et al. // ChemCatChem. 2017. V. 9. № 9. P. 1648. https://doi.org/10.1002/cctc.201601269
  26. Иванов К.В., Алексеева О.В., Агафонов А.В. // Неорган. материалы. 2020. Т. 56. № 5. С. 519. [Ivanov K.V., Alekseeva O.V., Agafonov A.V. // Inorg. Mater. 2020. V. 56. № 5. P. 494. https://doi.org/10.1134/S0020168520040068]https://doi.org/10.31857/S0002337X20040065
  27. Sardarian P., Naffakh-Moosavy H., Afghahi S.S.S. // J. Magn. Magn. Mater. 2017. V. 441. P. 257. https://doi.org/10.1016/j.jmmm.2017.05.074
  28. Alfredo Reyes Villegas V., Isaías De León Ramírez J., Hernandez Guevara E. et al. // J. Saudi Chem. Soc. 2020. V. 24. № 2. P. 223. https://doi.org/10.1016/j.jscs.2019.12.004
  29. Bell J.L.S., Palmer D.A., Barnes H.L. et al. // Geochim. Cosmochim. Acta. 1994. V. 58. № 19. P. 4155. https://doi.org/10.1016/0016-7037(94)90271-2
  30. Cui Y., Sun H., Briscoe J. et al. // Nanotechnology. 2019. V. 30. № 25. P. 255702. https://doi.org/10.1088/1361-6528/ab0b00
  31. Kim D.H., Lee S.J., Theerthagiri J. et al. // Chemosphere. 2021. V. 283. № June. P. 131218. https://doi.org/10.1016/j.chemosphere.2021.131218
  32. More S., Khedkar M.V., Kulkarni G.D. et al. // Optik (Stuttg). 2021. V. 247. P. 167913. https://doi.org/10.1016/j.ijleo.2021.167913
  33. Khalameida S., Sydorchuk V., Skubiszewska-Zięba J. et al. // J. Therm. Anal. Calorim. 2010. V. 101. № 2. P. 779. https://doi.org/10.1007/s10973-010-0755-3
  34. Mullens J., Van Werde K., Vanhoyland G. et al. // Thermochim. Acta. 2002. V. 392–393. P. 29. https://doi.org/10.1016/s0040-6031(02)00067-9
  35. Khirade P.P., Birajdar S.D., Raut A.V. et al. // Ceram. Int. 2016. V. 42. № 10. P. 12441. https://doi.org/10.1016/j.ceramint.2016.05.021
  36. Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафонов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
  37. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. P. 603. https://doi.org/https://doi.org/10.1515/iupac.57.0007
  38. Ivanov K.V., Noskov A.V., Alekseeva O.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 490. [Иванов К.В., Носков А.В., Алексеева О.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 464. https://doi.org/10.31857/S0044457X21040139]https://doi.org/10.1134/S0036023621040136
  39. Panthi G., Park M. // J. Energy Chem. 2022. V. 73. P. 160. https://doi.org/10.1016/j.jechem.2022.06.023
  40. Mohammed N., Grishkewich N., Berry R.M. et al. // Cellulose. 2015. V. 22. № 6. P. 3725. https://doi.org/10.1007/s10570-015-0747-3
  41. Alekseeva O.V., Noskov A.V., Agafonov A.V. // Cellulose. 2022. V. 29. P. 3947. https://doi.org/10.1007/s10570-022-04546-1

© К.В. Иванов, А.В. Плотвина, А.В. Агафонов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах