Influence of Fe3O4 on Physicochemical and Photocatalytic Properties of Nanosized Barium Titanate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A procedure has been proposed for the synthesis of a nanocomposite based on barium titanate modified by adding nanodispersed magnetite using the sol–gel method in an acetic acid medium followed by annealing at 800°C. The physicochemical analysis of the products has shown that the matrix phase after annealing is barium titanate with an admixture of barium carbonate, and, in addition to magnetite, there are minor inclusions of hematite and wustite. The elemental composition of nanosized samples has been determined using energy-dispersive X-ray spectroscopy. It has been demonstrated that the concentration of introduced Fe3O4 affects the morphological and phase composition of the composites. The specific surface area and type of porosity of calcined samples have been determined by the low-temperature nitrogen adsorption/desorption method. The effect of BaTiO3, BaTiO3/Fe3O4-1%, and BaTiO3/Fe3O4-10% powders on the adsorption capacity and photocatalytic activity in the process of decolorization of the dye rhodamine B from an aqueous solution in the dark and under the action of ultraviolet light has been studied. The kinetics of adsorption in the dark and photocatalytic decomposition of rhodamine B under the action of ultraviolet radiation in an aqueous suspension of the obtained composites have been analyzed using pseudo-first and pseudo-second order kinetic models.

Авторлар туралы

K. Ivanov

Krestov Institute of Solution Chemistry, Russian Academy of Sciencesy

Email: ivk@isc-ras.ru
153045, Ivanovo, Russia

A. Plotvina

Ivanovo State University of Chemical Technology

Email: ivk@isc-ras.ru
153000, Ivanovo, Russia

A. Agafonov

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ivk@isc-ras.ru
153045, Ivanovo, Russia

Әдебиет тізімі

  1. Drdlik D., Marak V., Maca K. et al. // Ceram. Int. 2022. V. 48. Issue 17. P. 24599. https://doi.org/10.1016/j.ceramint.2022.05.105
  2. Sasikumar S., Saravanakumar S., Asath Bahadur S. et al. // Optik (Stuttg). 2020. V. 206. P. 163752. https://doi.org/10.1016/j.ijleo.2019.163752
  3. Solís R.R., Bedia J., Rodríguez J.J. et al. // Chem. Eng. J. 2021. V. 409. P. 128110. https://doi.org/10.1016/j.cej.2020.128110
  4. Su Y.P., Sim L.N., Coster H.G.L. et al. // J. Memb. Sci. 2021. V. 640. P. 119861. https://doi.org/10.1016/j.memsci.2021.119861
  5. Ravanamma R., Muralidhara Reddy K., Venkata Krishnaiah K. et al. // Mater. Today Proc. 2021. V. 46. P. 259. https://doi.org/10.1016/j.matpr.2020.07.646
  6. Sandi D., Supriyanto A., Anif et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 107. P. 012069. https://doi.org/10.1088/1757-899X/107/1/012069
  7. Dang N.V., Dung N.T., Phong P.T. et al. // Phys. B: Condens. Matter. 2015. V. 457. P. 103. https://doi.org/10.1016/j.physb.2014.09.046
  8. Lal M., Sharma P., Ram C. // Optik (Stuttg). 2021. V. 241. P. 166934. https://doi.org/10.1016/j.ijleo.2021.166934
  9. Senthilkumar P., Jency D.A., Kavinkumar T. et al. // ACS Sustain. Chem. Eng. 2019. P. Acssuschemeng.9b00679. https://doi.org/10.1021/acssuschemeng.9b00679
  10. Phoon B.L., Lai C.W., Juan J.C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 28. P. 14316. https://doi.org/10.1016/j.ijhydene.2019.01.166
  11. Wang W.P., Yang H., Xian T. et al. // Adv. Sci. Eng. Med. 2012. V. 4. № 6. P. 479. https://doi.org/10.1166/asem.2012.1215
  12. Thamima M., Andou Y., Karuppuchamy S. // Ceram. Int. 2017. V. 43. № 1. P. 556. https://doi.org/10.1016/j.ceramint.2016.09.194
  13. Lee W.W., Chung W.-H., Huang W.-S. et al. // J. Taiwan Inst. Chem. Eng. 2013. V. 44. № 4. P. 660. https://doi.org/10.1016/j.jtice.2013.01.005
  14. Jiang X., Wang H., Wang X. et al. // Sol. Energy. 2021. V. 224. P. 455. https://doi.org/10.1016/j.solener.2021.06.032
  15. Tomar R., Prajapati R., Verma S. et al. // Mater. Today Proc. 2021. V. 34. P. 608. https://doi.org/10.1016/j.matpr.2020.01.543
  16. Liu K., Mi L., Wang H. et al. // Ceram. Int. 2021. V. 47. № 15. P. 22055. https://doi.org/10.1016/j.ceramint.2021.04.226
  17. Mohan H., Ramasamy M., Ramalingam V. et al. // J. Hazard. Mater. 2021. V. 412. P. 125330. https://doi.org/10.1016/j.jhazmat.2021.125330
  18. Rocha V.M. da S., Pereira M. de G., Teles L.R. et al. // Mater. Sci. Eng. B. 2014. V. 185. P. 13. https://doi.org/10.1016/j.mseb.2014.02.004
  19. Niculescu A.-G., Chircov C., Grumezescu A.M. // Methods. 2022. V. 199. P. 16. https://doi.org/10.1016/j.ymeth.2021.04.018
  20. Landfester K., Ramrez L.P. // J. Phys. Condens. Matter. 2003. V. 15. № 15. P. S1345. https://doi.org/10.1088/0953-8984/15/15/304
  21. Mishra P., Patnaik S., Parida K. // Catal. Sci. Technol. 2019. V. 9. № 4. P. 916. https://doi.org/10.1039/c8cy02462f
  22. Evdokimova O.L., Fedulova (Savicheva) A.D., Evdokimova A.V. et al. // Inorg. Mater. Appl. Res. 2020. V. 11. № 2. P. 371. https://doi.org/10.1134/S2075113320020100
  23. Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафо-нов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
  24. Shendy S.A., Shahverdizadeh G.H., Babazadeh M. et al. // Silicon. 2020. V. 12. № 7. P. 1735. https://doi.org/10.1007/s12633-019-00252-z
  25. Bennett J.A., Parlett C.M.A., Isaacs M.A. et al. // ChemCatChem. 2017. V. 9. № 9. P. 1648. https://doi.org/10.1002/cctc.201601269
  26. Иванов К.В., Алексеева О.В., Агафонов А.В. // Неорган. материалы. 2020. Т. 56. № 5. С. 519. [Ivanov K.V., Alekseeva O.V., Agafonov A.V. // Inorg. Mater. 2020. V. 56. № 5. P. 494. https://doi.org/10.1134/S0020168520040068]https://doi.org/10.31857/S0002337X20040065
  27. Sardarian P., Naffakh-Moosavy H., Afghahi S.S.S. // J. Magn. Magn. Mater. 2017. V. 441. P. 257. https://doi.org/10.1016/j.jmmm.2017.05.074
  28. Alfredo Reyes Villegas V., Isaías De León Ramírez J., Hernandez Guevara E. et al. // J. Saudi Chem. Soc. 2020. V. 24. № 2. P. 223. https://doi.org/10.1016/j.jscs.2019.12.004
  29. Bell J.L.S., Palmer D.A., Barnes H.L. et al. // Geochim. Cosmochim. Acta. 1994. V. 58. № 19. P. 4155. https://doi.org/10.1016/0016-7037(94)90271-2
  30. Cui Y., Sun H., Briscoe J. et al. // Nanotechnology. 2019. V. 30. № 25. P. 255702. https://doi.org/10.1088/1361-6528/ab0b00
  31. Kim D.H., Lee S.J., Theerthagiri J. et al. // Chemosphere. 2021. V. 283. № June. P. 131218. https://doi.org/10.1016/j.chemosphere.2021.131218
  32. More S., Khedkar M.V., Kulkarni G.D. et al. // Optik (Stuttg). 2021. V. 247. P. 167913. https://doi.org/10.1016/j.ijleo.2021.167913
  33. Khalameida S., Sydorchuk V., Skubiszewska-Zięba J. et al. // J. Therm. Anal. Calorim. 2010. V. 101. № 2. P. 779. https://doi.org/10.1007/s10973-010-0755-3
  34. Mullens J., Van Werde K., Vanhoyland G. et al. // Thermochim. Acta. 2002. V. 392–393. P. 29. https://doi.org/10.1016/s0040-6031(02)00067-9
  35. Khirade P.P., Birajdar S.D., Raut A.V. et al. // Ceram. Int. 2016. V. 42. № 10. P. 12441. https://doi.org/10.1016/j.ceramint.2016.05.021
  36. Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафонов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
  37. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. P. 603. https://doi.org/https://doi.org/10.1515/iupac.57.0007
  38. Ivanov K.V., Noskov A.V., Alekseeva O.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 490. [Иванов К.В., Носков А.В., Алексеева О.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 464. https://doi.org/10.31857/S0044457X21040139]https://doi.org/10.1134/S0036023621040136
  39. Panthi G., Park M. // J. Energy Chem. 2022. V. 73. P. 160. https://doi.org/10.1016/j.jechem.2022.06.023
  40. Mohammed N., Grishkewich N., Berry R.M. et al. // Cellulose. 2015. V. 22. № 6. P. 3725. https://doi.org/10.1007/s10570-015-0747-3
  41. Alekseeva O.V., Noskov A.V., Agafonov A.V. // Cellulose. 2022. V. 29. P. 3947. https://doi.org/10.1007/s10570-022-04546-1

© К.В. Иванов, А.В. Плотвина, А.В. Агафонов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>