Synthesis and Crystal Structures of (HL)2[B10Cl10]·3CH3CN (L = Bipy, Phen)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Reactions of (Et3NH)2[B10Cl10] and organic ligands 2,2'-bipyridyl (Bipy) and 1,10-phenanthroline (Phen) in the acetonitrile–trifluoroacetic acid system have yielded compounds of composition (HL)2[B10Cl10]·3CH3CN (L = Bipy, Phen). The compounds have been characterized by IR spectroscopy, elemental analysis, and X-ray diffraction (CCDC nos. 2224377 and 2224378). It has been shown that in the presence of trifluoroacetic acid, protonation of organic ligands occurs with the formation of bipyridylium and phenanthrolinium salts, which are stabilized by the decachloro-closo-decaborate anion. It has been found that the cations participate in the formation of hydrogen bonds with the solvate molecules of acetonitrile, while only weak C–H…Cl and B–Cl…π interactions are observed for boron cluster anions.

Sobre autores

V. Avdeeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

A. Vologzhanina

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119334, Moscow, Russia

S. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

E. Malinina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

Bibliografia

  1. Muetterties E.L., Knoth W.H. Polyhedral Boranes. N.Y.: Dekker, 1968.
  2. Boron Science: New Technologies and Applications / Ed. Hosmane N.S. CRC Press, 2012.
  3. Greenwood N.N., Earnshaw A. Chemistry of the Elements. Butterworth-Heinemann, 1997.
  4. King B.R. // Chem. Rev. 2001. V. 101. P. 1119. https://doi.org/10.1021/cr000442t
  5. Chen Z., King R.B. // Chem. Rev. 2005. V. 105. P. 3613. https://doi.org/10.1021/cr0300892
  6. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  7. Авдеева В.В., Короленко С.Е., Малинина Е.А., Кузнецов Н.Т. // Журн. общей химии. 2022. Т. 92. № 3. С. 443.
  8. Alexandrova A.N., Boldyrev A.I., Zhai H.J., Wang L.S. // Coord. Chem. Rev. 2006. V. 250. P. 2811. https://doi.org/10.1039/D2QI00890D
  9. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  10. Сиваев И.Б. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1192. [Sivaev I.B. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1289.] https://doi.org/10.1134/S0036023621090151
  11. Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 139. https://doi.org/10.1134/S0036023621020133
  12. Shmal’ko A.V., Sivaev I.B. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1726. https://doi.org/10.1134/S0036023619140067
  13. Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2089. https://doi.org/10.1134/S0036023610140019
  14. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
  15. Avdeeva V.V., Buzanov G.A., Malinina E.A. et al. // Crystals. 2020. V. 10. P. 389. https://doi.org/10.3390/cryst10050389
  16. Avdeeva V.V., Vologzhanina A.V., Ugolkova E.A. et al. // J. Solid State Chem. 2021. V. 296. P. 121989. https://doi.org/10.1016/j.jssc.2021.121989
  17. Matveev E.Yu., Novikov I.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 187. https://doi.org/10.1134/S0036023621020121
  18. Matveev E.Y., Avdeeva V.V., Zhizhin K.Y. et al. // Inorganics. 2022. V. 10. P. 238. https://doi.org/10.3390/inorganics10120238
  19. Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. // Коорд. химия. 2021. Т. 47. № 8. С. 457.
  20. Malinina E.A., Korolenko S.E., Zhdanov A.P. et al. // J. Clust. Chem. 2021. V. 32. P. 755. https://doi.org/10.1007/s10876-020-01840-5
  21. Сиваев И.Б. // Журн. неорган. химии. 2019. Т. 64. № 8. С. 789.
  22. Axtell J.C., Saleh L.M.A., Qian E.A. et al. // Inorg. Chem. 2018. V. 57. № 5. P. 2333. https://doi.org/10.1021/acs.inorgchem.7b02912
  23. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1673. https://doi.org/10.1134/S0036023617130022
  24. Dziova A.E., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2011. V. 440. P. 253. https://doi.org/10.1134/S0012500811090035
  25. Elrington M., Greenwood N.N., Kennedy J.D., Thornton-Pett M. // J. Chem. Soc., Dalton Trans. 1987. V. 2. P. 451. https://doi.org/10.1039/DT9870000451
  26. Avdeeva V.V., Polyakova I.N., Churakov A.V. et al. // Polyhedron. 2019. V. 162. P. 65. https://doi.org/10.1016/j.poly.2019.01.051
  27. Avdeeva V.V., Vologzhanina A.V., Goeva L.V. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 2149. https://doi.org/10.1002/zaac.201400137
  28. Avdeeva V.V., Vologzhanina A.V., Goeva L.V. et al. // Inorg. Chim. Acta. 2015. V. 428. P. 154. https://doi.org/10.1016/j.ica.2014.12.029
  29. Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Polyhedron. 2015. V. 430. P. 74. https://doi.org/10.1016/j.ica.2015.02.029
  30. Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 284. https://doi.org/10.1016/j.ica.2018.03.024
  31. Avdeeva V.V., Vologzhanina A.V., Malinina E.A., Kuznetsov N.T. // Crystals. 2019. V. 9. P. 330. https://doi.org/10.3390/cryst9070330
  32. Chantler C.T., Maslen E.N. // Acta Crystallogr., Sect. B. 1989. V. 45. P. 290.
  33. Fuller D.J., Kepert D.L., Skelton B.W., White A.H. // Aust. J. Chem. 1987. V. 40. P. 2097.
  34. Goeva L.V., Zhuchkova A.F., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1144. https://doi.org/10.1134/S0036023622080149
  35. Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885.
  36. Kravchenko E.A., Gippius A.A., Korlyukov A.A. et al. // Inorg. Chim. Acta. 2016. V. 447. P. 22. https://doi.org/10.1016/j.ica.2016.03.025
  37. SAINT-Plus (Version 7.68) // Bruker AXS Inc., Madison, Wisconsin, USA. 2007.
  38. SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  39. Sheldrick G.M. // Acta Crystallogr. 2015. V. 71A. № 1. P. 3.
  40. Sheldrick G.M. // Acta Crystallogr. 2015. V. 71C. № 1. P. 3.
  41. Martsinko E.E., Seifullina I.I., Chebanenko E.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 393. https://doi.org/10.1134/S1070328418060039
  42. Seifullina I.I., Martsinko E.E., Chebanenko E.A. et al. // J. Struct. Chem. 2017. V. 58. P. 532. https://doi.org/10.1134/S0022476617030143
  43. Petrosyants S.P., Ilyukhin A.B. // Russ. J. Coord. Chem. 2014. V. 40. P. 825. https://doi.org/10.1134/S107032841410008X
  44. Yin P., Xue C., Yan Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 456. https://doi.org/10.1134/S0036023622040222
  45. Chebanenko E.A., Seifullina I.I., Martsinko E.E. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1132. https://doi.org/10.1134/S0036023619090043
  46. Petrosyants S.P., Dobrokhotova Z.V., Ilyukhin A.B. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 29. P. 3561. https://doi.org/10.1002/ejic.201700537

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (87KB)
3.

Baixar (787KB)
4.

Baixar (761KB)
5.

Baixar (290KB)

Declaração de direitos autorais © В.В. Авдеева, А.В. Вологжанина, С.Е. Никифорова, Г.А. Бузанов, Е.А. Малинина, Н.Т. Кузнецов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies