Thermodynamics of Cesium Molybdate-Based Single Crystals: Standard Enthalpy of Formation, Lattice Enthalpy, and Heat Capacity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cs2MoO4 and Li1.9Cs0.1MoO4 crystals were grown from melt by the low-thermal-gradient Czochralski technique. The standard formation enthalpy of cesium molybdate Cs2MoO4 was measured by solution calorimetry. The heat capacity of Li1.9Cs0.1MoO4 was measured by differential scanning calorimetry (DSC) in the temperature range 320–710 K. The lattice enthalpy of Cs2MoO4 was calculated using the Born-Haber cycle. Cesium molybdate was shown to be thermodynamically stable to decomposition into constituent simple oxides (Cs2O and MoO3), which made it promising for application. Li1.9Cs0.1MoO4 experienced no phase transitions in the temperature range 320–710 K.

About the authors

N. I. Matskevich

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

A. N. Semerikova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. A. Trifonov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

D. A. Samoshkin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. A. Chernov

Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

S. V. Stankus

Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

S. A. Luk’yanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. N. Shlegel’

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. P. Zaitsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Siberian State University of Water Transport

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia; 630099, Novosibirsk, Russia

V. A. Kuznetsov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

References

  1. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1779. https://doi.org/10.1134/S0036023621120160
  2. Bekker T.B., Coron N., Danevich F.A. et al. // Astroparticle Phys. 2016. V. 72. P. 38. https://doi.org/10.1016/j.astropartphys.2015.06.002
  3. Barinova O., Sadovskiy A., Ermochenkov I. // J. Cryst. Growth. 2017. V. 468. P. 365. https://doi.org/10.1016/j.jcrysgro.2016.10.009
  4. Fattakhova Z.A., Vovkotrub E.G., Zhknarova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. P. 35. https://doi.org/10.1134/S0036023621010022
  5. Teng T., Xiao L., Shen L. et al. // Appl. Surf. Sci. 2022. V. 601. P. 154101. https://doi.org/10.1016/j.apsusc.2022.154101
  6. Isaenko L.I., Korzhneva K.E., Khyzhin O.Y. et al. // J. Solid State Chem. 2019. V. 277. P. 786. https://doi.org/10.1016/j.jssc.2019.07.047
  7. Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 245. https://doi.org/10.1134/S0036023622020164
  8. Kim H., Pandey I.R., Khan A. et al. // Cryst. Res. Technol. 2019. V. 54. P. 1900079. https://doi.org/10.1002/crat.201900079
  9. Son J.K., Pandey I.R., Kim H.J. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 2120. https://doi.org/10.1109/TNS.2018.2818330
  10. Papynov E.K., Shichalin O.O., Belov A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1434. https://doi.org/10.1134/S0036023621090114
  11. Smith A.L., Kauric G., van Eijck L. et al. // J. Solid State Chem. 2017. V. 253. P. 89. https://doi.org/10.1016/j.jssc.2017.05.032
  12. Matskevich N.I., Semerikova A.N., Shlegel V.N. et al. // J. Alloys Compd. 2021. V. 850. P. 156683. https://doi.org/10.1016/j.jallcom.2020.156683
  13. Kasimkin P.V., Moskovskih V.A., Vasiliev Y.V. // J. Cryst. Growth. 2014. V. 390. P. 67. https://doi.org/10.1016/j.jcrysgro.2013.12.027
  14. Volokitina A., Loiko P., Pavlyuk A. et al. // Opt. Mater. Express. 2020. V. 10. P. 2356. https://doi.org/10.1364/OME.400894
  15. Matiutin A.S., Kovalenko N.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2022. V. 67. P. 984. https://doi.org/10.1021/acs.jced.1c00849
  16. Druzhinina A.I., Tiflova L.A., Monayenkova A.S. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2101. https://doi.org/10.1134/S0036024419110098
  17. Matskevich N.I., Kellerman D.G., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 720. https://doi.org/10.1134/S0036023620050150
  18. Tsvetkov D.S., Sereda V.V., Malyshkin D.A. et al. // Chim. Techno Acta. 2021. V. 7. P. 42. https://doi.org/10.15826/CHIMTECH.2020.7.2.01
  19. Matskevich N.I., Wolf Th., Vyazovkin I.V. et al. // J. Alloys Compd. 2015. V. 628. P. 126. https://doi.org/10.1016/j.jallcom.2014.11.220
  20. Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
  21. Matskevich N.I., Krabbes G., Berasteguie P. // Thermochim. Acta. 2003. V. 397. P. 97. https://doi.org/10.1016/S0040-6031(02)00330-1
  22. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
  23. Gunther C., Pfestorf R., Rother M. et al. // J. Therm. Anal. Calorim. 1988. V. 33. P. 359. https://doi.org/10.1007/BF01914624
  24. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1195. https://doi.org/10.1134/S0036024422060103
  25. Zvereva I.A., Shelyapina M.G., Chislov M. et al. // J. Therm. Anal. Calorim. 2022. V. 147. P. 6147. https://doi.org/10.1007/s10973-021-10947-4
  26. Kosova D.A., Provotorov D.I., Kuzovchikov S.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 752. https://doi.org/10.1134/S0036023620050125
  27. Samoshkin D.A., Agazhanov A.Sh., Stankus S.V. // J. Phys.: Conf. Ser. 2021. V. 2119. P. 012135. https://doi.org/10.1088/1742-6596/2119/1/012135
  28. Smirnova N.N., Markin A.V., Abarbanel N.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2387. https://doi.org/10.1134/S0036024421120219
  29. Matskevich N.I., Wolf Th., Le Tacon M. et al. // J. Therm. Anal. Calorim. 2017. V. 130. P. 1125. https://doi.org/10.1007/s10973-017-6493-z
  30. Drebushchak V.A., Isaenko L.I., Lobanov S.I. et al. // J. Therm. Anal. Calorim. 2017. V. 129. P. 103. https://doi.org/10.1007/s10973-017-6176-9
  31. Tkachev E.N., Matskevich N.I., Samoshkin D.A. et al. // Phys. B: Cond. Matter. 2021. V. 612. P. 412880. https://doi.org/10.1016/j.physb.2021.412880
  32. Khan A., Khan S., Kim H.J. et al // Optik. 2021. V. 242. P. 167035. https://doi.org/10.1016/j.ijleo.2021.167035
  33. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances), Moscow: VINITI, 1965–1982. № 1–10.
  34. O’Hare P.A.G., Hoekstra H.R. // J. Chem. Thermodyn. 1973. V. 5. P. 851. https://doi.org/10.1016/S0021-9614(73)80047-3
  35. Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // J. Alloys Compd. 2015. V. 639. P. 145. https://doi.org/10.1016/j.jallcom.2015.03.159
  36. Orborne D.W., Flotov H.E., Hoekstra H.R. // J. Chem. Thermodyn. 1974. V. 6. P. 179. https://doi.org/10.1016/0021-9614(74)90260-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (51KB)

Copyright (c) 2023 Н.И. Мацкевич, А.Н. Семерикова, В.А. Трифонов, Д.А. Самошкин, А.А. Чернов, С.В. Станкус, С.А. Лукьянова, В.Н. Шлегель, В.П. Зайцев, В.А. Кузнецов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».