Thermodynamics of Cesium Molybdate-Based Single Crystals: Standard Enthalpy of Formation, Lattice Enthalpy, and Heat Capacity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cs2MoO4 and Li1.9Cs0.1MoO4 crystals were grown from melt by the low-thermal-gradient Czochralski technique. The standard formation enthalpy of cesium molybdate Cs2MoO4 was measured by solution calorimetry. The heat capacity of Li1.9Cs0.1MoO4 was measured by differential scanning calorimetry (DSC) in the temperature range 320–710 K. The lattice enthalpy of Cs2MoO4 was calculated using the Born-Haber cycle. Cesium molybdate was shown to be thermodynamically stable to decomposition into constituent simple oxides (Cs2O and MoO3), which made it promising for application. Li1.9Cs0.1MoO4 experienced no phase transitions in the temperature range 320–710 K.

作者简介

N. Matskevich

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

A. Semerikova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. Trifonov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

D. Samoshkin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. Chernov

Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

S. Stankus

Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

S. Luk’yanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. Shlegel’

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

V. Zaitsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Siberian State University of Water Transport

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia; 630099, Novosibirsk, Russia

V. Kuznetsov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

参考

  1. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1779. https://doi.org/10.1134/S0036023621120160
  2. Bekker T.B., Coron N., Danevich F.A. et al. // Astroparticle Phys. 2016. V. 72. P. 38. https://doi.org/10.1016/j.astropartphys.2015.06.002
  3. Barinova O., Sadovskiy A., Ermochenkov I. // J. Cryst. Growth. 2017. V. 468. P. 365. https://doi.org/10.1016/j.jcrysgro.2016.10.009
  4. Fattakhova Z.A., Vovkotrub E.G., Zhknarova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. P. 35. https://doi.org/10.1134/S0036023621010022
  5. Teng T., Xiao L., Shen L. et al. // Appl. Surf. Sci. 2022. V. 601. P. 154101. https://doi.org/10.1016/j.apsusc.2022.154101
  6. Isaenko L.I., Korzhneva K.E., Khyzhin O.Y. et al. // J. Solid State Chem. 2019. V. 277. P. 786. https://doi.org/10.1016/j.jssc.2019.07.047
  7. Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 245. https://doi.org/10.1134/S0036023622020164
  8. Kim H., Pandey I.R., Khan A. et al. // Cryst. Res. Technol. 2019. V. 54. P. 1900079. https://doi.org/10.1002/crat.201900079
  9. Son J.K., Pandey I.R., Kim H.J. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 2120. https://doi.org/10.1109/TNS.2018.2818330
  10. Papynov E.K., Shichalin O.O., Belov A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1434. https://doi.org/10.1134/S0036023621090114
  11. Smith A.L., Kauric G., van Eijck L. et al. // J. Solid State Chem. 2017. V. 253. P. 89. https://doi.org/10.1016/j.jssc.2017.05.032
  12. Matskevich N.I., Semerikova A.N., Shlegel V.N. et al. // J. Alloys Compd. 2021. V. 850. P. 156683. https://doi.org/10.1016/j.jallcom.2020.156683
  13. Kasimkin P.V., Moskovskih V.A., Vasiliev Y.V. // J. Cryst. Growth. 2014. V. 390. P. 67. https://doi.org/10.1016/j.jcrysgro.2013.12.027
  14. Volokitina A., Loiko P., Pavlyuk A. et al. // Opt. Mater. Express. 2020. V. 10. P. 2356. https://doi.org/10.1364/OME.400894
  15. Matiutin A.S., Kovalenko N.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2022. V. 67. P. 984. https://doi.org/10.1021/acs.jced.1c00849
  16. Druzhinina A.I., Tiflova L.A., Monayenkova A.S. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2101. https://doi.org/10.1134/S0036024419110098
  17. Matskevich N.I., Kellerman D.G., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 720. https://doi.org/10.1134/S0036023620050150
  18. Tsvetkov D.S., Sereda V.V., Malyshkin D.A. et al. // Chim. Techno Acta. 2021. V. 7. P. 42. https://doi.org/10.15826/CHIMTECH.2020.7.2.01
  19. Matskevich N.I., Wolf Th., Vyazovkin I.V. et al. // J. Alloys Compd. 2015. V. 628. P. 126. https://doi.org/10.1016/j.jallcom.2014.11.220
  20. Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
  21. Matskevich N.I., Krabbes G., Berasteguie P. // Thermochim. Acta. 2003. V. 397. P. 97. https://doi.org/10.1016/S0040-6031(02)00330-1
  22. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
  23. Gunther C., Pfestorf R., Rother M. et al. // J. Therm. Anal. Calorim. 1988. V. 33. P. 359. https://doi.org/10.1007/BF01914624
  24. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1195. https://doi.org/10.1134/S0036024422060103
  25. Zvereva I.A., Shelyapina M.G., Chislov M. et al. // J. Therm. Anal. Calorim. 2022. V. 147. P. 6147. https://doi.org/10.1007/s10973-021-10947-4
  26. Kosova D.A., Provotorov D.I., Kuzovchikov S.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 752. https://doi.org/10.1134/S0036023620050125
  27. Samoshkin D.A., Agazhanov A.Sh., Stankus S.V. // J. Phys.: Conf. Ser. 2021. V. 2119. P. 012135. https://doi.org/10.1088/1742-6596/2119/1/012135
  28. Smirnova N.N., Markin A.V., Abarbanel N.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2387. https://doi.org/10.1134/S0036024421120219
  29. Matskevich N.I., Wolf Th., Le Tacon M. et al. // J. Therm. Anal. Calorim. 2017. V. 130. P. 1125. https://doi.org/10.1007/s10973-017-6493-z
  30. Drebushchak V.A., Isaenko L.I., Lobanov S.I. et al. // J. Therm. Anal. Calorim. 2017. V. 129. P. 103. https://doi.org/10.1007/s10973-017-6176-9
  31. Tkachev E.N., Matskevich N.I., Samoshkin D.A. et al. // Phys. B: Cond. Matter. 2021. V. 612. P. 412880. https://doi.org/10.1016/j.physb.2021.412880
  32. Khan A., Khan S., Kim H.J. et al // Optik. 2021. V. 242. P. 167035. https://doi.org/10.1016/j.ijleo.2021.167035
  33. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances), Moscow: VINITI, 1965–1982. № 1–10.
  34. O’Hare P.A.G., Hoekstra H.R. // J. Chem. Thermodyn. 1973. V. 5. P. 851. https://doi.org/10.1016/S0021-9614(73)80047-3
  35. Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // J. Alloys Compd. 2015. V. 639. P. 145. https://doi.org/10.1016/j.jallcom.2015.03.159
  36. Orborne D.W., Flotov H.E., Hoekstra H.R. // J. Chem. Thermodyn. 1974. V. 6. P. 179. https://doi.org/10.1016/0021-9614(74)90260-2

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (51KB)

版权所有 © Н.И. Мацкевич, А.Н. Семерикова, В.А. Трифонов, Д.А. Самошкин, А.А. Чернов, С.В. Станкус, С.А. Лукьянова, В.Н. Шлегель, В.П. Зайцев, В.А. Кузнецов, 2023

##common.cookie##