Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 74, Nº 6 (2019)

Another view of the maximum principle for infinite-horizon optimal control problems in economics

Aseev S., Veliov V.

Resumo

The authors present their recently developed complete version of the Pontryagin maximum principle for a class of infinite-horizon optimal control problems arising in economics. The main distinguishing feature of the result is that the adjoint variable is explicitly specified by a formula analogous to the Cauchy formula for solutions of linear differential systems. In certain situations this formula implies the ‘standard’ transversality conditions at infinity. Moreover, it can serve as an alternative to them. Examples demonstrate the advantages of the proposed version of the maximum principle. In particular, its applications are considered to Halkin's example, to Ramsey's optimal economic growth model, and to a basic model for optimal extraction of a non-renewable resource. Also presented is an economic interpretation of the characterization obtained for the adjoint variable.Bibliography: 62 titles.
Uspekhi Matematicheskikh Nauk. 2019;74(6):3-54
pages 3-54 views

Cubillages of cyclic zonotopes

Danilov V., Karzanov A., Koshevoy G.

Resumo

A survey is given of recent results on fine zonotopal tilings by cubes (briefly, cubillages) of cyclic zonotopes. The main interest of this theory is that it is interrelated with the theory of higher Bruhat orders, as well as with the parallel theory of triangulations of cyclic polytopes and Tamari–Stasheff posets, used in investigations of the Kadomtsev–Petviashvili equations and higher Auslander–Reiten algebras.
Uspekhi Matematicheskikh Nauk. 2019;74(6):55-118
pages 55-118 views

Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line

Prokhorov D., Stepanov V., Ushakova E.

Resumo

A brief survey of results on the characterization of the spaces associated with given classes of function spaces is presented. It is shown that the situation differs in general for ideal and non-ideal spaces. In the second case the notion of associated space splits into two. In the main body of the text a complete description is given of the function spaces associated with weighted Sobolev spaces of the first order on the real line.Bibliography: 54 titles.
Uspekhi Matematicheskikh Nauk. 2019;74(6):119-158
pages 119-158 views

Variational principle for multidimensional conservation laws and pressureless media

Aptekarev A., Rykov Y.
Uspekhi Matematicheskikh Nauk. 2019;74(6):159-160
pages 159-160 views

An explicit local combinatorial formula for the first Pontryagin class

Gaifullin A., Gorodkov D.
Uspekhi Matematicheskikh Nauk. 2019;74(6):161-162
pages 161-162 views

On a local holomorphic version of the fundamental theorem of projective geometry

Kruzhilin N.
Uspekhi Matematicheskikh Nauk. 2019;74(6):163-164
pages 163-164 views

Moments of the numbers of particles in a heavy-tailed branching random walk

Rytova A., Yarovaya E.
Uspekhi Matematicheskikh Nauk. 2019;74(6):165-166
pages 165-166 views

Recovery of sparse integer vectors from linear measurements

Ryutin K.
Uspekhi Matematicheskikh Nauk. 2019;74(6):167-168
pages 167-168 views

Pogorelov's problem on isometric transformations of a cylindrical surface

Shtogrin M.
Uspekhi Matematicheskikh Nauk. 2019;74(6):169-170
pages 169-170 views

On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov

Borisenko A., Vesnin A., Ivochkina N.
Uspekhi Matematicheskikh Nauk. 2019;74(6):171-193
pages 171-193 views

Mikhail Ivanovich Shtogrin (on his 80th birthday)

Alexandrov V., Beklemishev L., Buchstaber V., Vesnin A., Gaifullin A., Dolbilin N., Erokhovets N., Kovalev M., Makarov V., Novikov S., Orlov D., Parshin A., Sabitov I., Treschev D., Sheinman O., Shchepin E.
Uspekhi Matematicheskikh Nauk. 2019;74(6):194-197
pages 194-197 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).