Cubillages of cyclic zonotopes
- Authors: Danilov V.I.1, Karzanov A.V.1, Koshevoy G.A.2,3
-
Affiliations:
- Central Economics and Mathematics Institute of the Russian Academy of Sciences
- Institute for Information Transmission Problems, Russian Academy of Sciences
- HSE University
- Issue: Vol 74, No 6 (2019)
- Pages: 55-118
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133577
- DOI: https://doi.org/10.4213/rm9879
- ID: 133577
Cite item
Abstract
About the authors
Vladimir Ivanovich Danilov
Central Economics and Mathematics Institute of the Russian Academy of Sciences
Email: vdanilov43@mail.ru
Aleksander Viktorovich Karzanov
Central Economics and Mathematics Institute of the Russian Academy of Sciences
Email: sasha@cs.isa.ru
Gleb Alekseevich Koshevoy
Institute for Information Transmission Problems, Russian Academy of Sciences; HSE University
Email: koshevoy@cemi.rssi.ru
Doctor of physico-mathematical sciences, no status
References
- G. D. Bailey, Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Thesis (Ph.D.), Minnesota Univ., 1997, 108 pp.
- A. Bj{ö}rner, M. {Las Vergnas}, B. Sturmfels, N. White, G. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, 2nd ed., Cambridge Univ. Press, 1999, xii+548 pp.
- N. Bourbaki, Elements de mathematique. Topologie algebrique. Ch. 1 à 4, Springer, Heidelberg, 2016, xv+498 pp.
- В. И. Данилов, А. В. Карзанов, Г. А. Кошевой, “Системы разделенных множеств и их геометрические модели”, УМН, 65:4(394) (2010), 67–152
- V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Combined tilings and separated set-systems”, Selecta Math. (N. S.), 23:2 (2017), 1175–1203
- V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, On interrelations between strongly, weakly and chord separated set-systems (a geometric approach), 2018, 30 pp.
- V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, The weak separation in higher dimensions, 2019, 28 pp.
- В. И. Данилов, Г. А. Кошевой, “Массивы и комбинаторика таблиц Юнга”, УМН, 60:2(362) (2005), 79–142
- A. Dimakis, F. Müller-Hoissen, “KP solitons, higher Bruhat and Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 391–423
- P. H. Edelman, V. Reiner, “Free arrangements and rhombic tilings”, Discrete Comput. Geom, 15:3 (1996), 307–340
- S. Felsner, H. Weil, “A theorem on higher Bruhat orders”, Discrete Comput. Geom., 23:1 (2000), 121–127
- S. Felsner, G. M. Ziegler, “Zonotopes associated with higher Bruhat orders”, Discrete Math., 241:1-3 (2001), 301–312
- P. Galashin, “Plabic graphs and zonotopal tilings”, Proc. Lond. Math. Soc. (3), 117:4 (2018), 661–681
- P. Galashin, A. Postnikov, Purity and separation for oriented matroids, 2017, 84 pp.
- И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных компактных многообразиях”, УМН, 42:2(254) (1987), 107–134
- M. M. Kapranov, V. A. Voevodsky, “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259
- M. M. Kapranov, V. A. Voevodsky, “Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results)”, International category theory meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Geom. Differentielle Categ., 32:1 (1991), 11–27
- R. Karpman, Y. Kodama, Triangulations and soliton graphs for totally positive Grassmannian, 2018, 40 pp.
- M. Las Vergnas, “Extensions ponctuelles compatibles d'une geometrie combinatoire”, C. R. Acad. Sci. Paris, Ser. A-B, 286:21 (1978), A981–A984
- B. Leclerc, A. Zelevinsky, “Quasicommuting families of quantum Pl{ü}cker coordinates”, Kirillov's seminar on representation theory, Amer. Math. Soc. Trans. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 85–108
- J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp.
- С. Маклейн, Категории для работающего математика, Физматлит, М., 2004, 352 с.
- Ю. И. Манин, В. В. Шехтман, “О высших порядках Брюа, связанных с симметрической группой”, Функц. анализ и его прил., 20:2 (1986), 74–75
- Yu. I. Manin, V. V. Schechtman, “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic number theory – in honour of K. Iwasawa, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 289–308
- F. Müller-Hoissen, J. M. Pallo, J. Stasheff (eds.), Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, xx+433 pp.
- S. Oppermann, H. Thomas, “Higher-dimensional cluster combinatorics and representation theory”, J. Eur. Math. Soc. (JEMS), 14:6 (2012), 1679–1737
- J. Rambau, “Triangulations of cyclic polytopes and higher Bruhat orders”, Mathematika, 44:1 (1997), 162–194
- J. Rambau, V. Reiner, “A survey of the higher Stasheff–Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 351–390
- G. C. Shephard, “Combinatorial properties of associated zonotopes”, Canadian J. Math., 26:2 (1974), 302–321
- Р. Стенли, Перечислительная комбинаторика, Мир, М., 1990, 440 с.
- Р. Стенли, Перечислительная комбинаторика. Деревья, производящие функции и симметрические функции, Мир, М., 2005, 767 с.
- H. Thomas, Maps between higher Bruhat orders and higher Stasheff–Tamari posets, Proceedings of the 15-th international conference on formal power series and algebraic combinatorics (Link{ö}ping, 2003), 2005, 12 pp., par
- В. А. Воеводский, М. М. Капранов, “Свободная $n$-категория, порожденная кубом, ориентированные матроиды и высшие порядки Брюа”, Функц. анализ и его прил., 25:1 (1991), 62–65
- G. M. Ziegler, “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32:2 (1993), 259–279
- Г. M. Циглер, Теория многогранников, МЦНМО, М., 2014, 568 с.
Supplementary files
