A bi-Hamiltonian system on the Grassmannian
- Авторлар: Bonechi F.1, Qiu J.2, Tarlini M.1
-
Мекемелер:
- Sezione di Firenze
- Department of Mathematics
- Шығарылым: Том 189, № 1 (2016)
- Беттер: 1401-1410
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170782
- DOI: https://doi.org/10.1134/S0040577916100019
- ID: 170782
Дәйексөз келтіру
Аннотация
Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
Авторлар туралы
F. Bonechi
Sezione di Firenze
Хат алмасуға жауапты Автор.
Email: francesco.bonechi@fi.infn.it
Италия, Firenze
J. Qiu
Department of Mathematics
Email: francesco.bonechi@fi.infn.it
Швеция, Uppsala
M. Tarlini
Sezione di Firenze
Email: francesco.bonechi@fi.infn.it
Италия, Firenze
Қосымша файлдар
