A bi-Hamiltonian system on the Grassmannian
- Autores: Bonechi F.1, Qiu J.2, Tarlini M.1
-
Afiliações:
- Sezione di Firenze
- Department of Mathematics
- Edição: Volume 189, Nº 1 (2016)
- Páginas: 1401-1410
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170782
- DOI: https://doi.org/10.1134/S0040577916100019
- ID: 170782
Citar
Resumo
Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
Sobre autores
F. Bonechi
Sezione di Firenze
Autor responsável pela correspondência
Email: francesco.bonechi@fi.infn.it
Itália, Firenze
J. Qiu
Department of Mathematics
Email: francesco.bonechi@fi.infn.it
Suécia, Uppsala
M. Tarlini
Sezione di Firenze
Email: francesco.bonechi@fi.infn.it
Itália, Firenze
Arquivos suplementares
