A bi-Hamiltonian system on the Grassmannian
- Authors: Bonechi F.1, Qiu J.2, Tarlini M.1
-
Affiliations:
- Sezione di Firenze
- Department of Mathematics
- Issue: Vol 189, No 1 (2016)
- Pages: 1401-1410
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170782
- DOI: https://doi.org/10.1134/S0040577916100019
- ID: 170782
Cite item
Abstract
Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
About the authors
F. Bonechi
Sezione di Firenze
Author for correspondence.
Email: francesco.bonechi@fi.infn.it
Italy, Firenze
J. Qiu
Department of Mathematics
Email: francesco.bonechi@fi.infn.it
Sweden, Uppsala
M. Tarlini
Sezione di Firenze
Email: francesco.bonechi@fi.infn.it
Italy, Firenze
Supplementary files
