A bi-Hamiltonian system on the Grassmannian
- 作者: Bonechi F.1, Qiu J.2, Tarlini M.1
-
隶属关系:
- Sezione di Firenze
- Department of Mathematics
- 期: 卷 189, 编号 1 (2016)
- 页面: 1401-1410
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170782
- DOI: https://doi.org/10.1134/S0040577916100019
- ID: 170782
如何引用文章
详细
Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
作者简介
F. Bonechi
Sezione di Firenze
编辑信件的主要联系方式.
Email: francesco.bonechi@fi.infn.it
意大利, Firenze
J. Qiu
Department of Mathematics
Email: francesco.bonechi@fi.infn.it
瑞典, Uppsala
M. Tarlini
Sezione di Firenze
Email: francesco.bonechi@fi.infn.it
意大利, Firenze
补充文件
