A bi-Hamiltonian system on the Grassmannian


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.

作者简介

F. Bonechi

Sezione di Firenze

编辑信件的主要联系方式.
Email: francesco.bonechi@fi.infn.it
意大利, Firenze

J. Qiu

Department of Mathematics

Email: francesco.bonechi@fi.infn.it
瑞典, Uppsala

M. Tarlini

Sezione di Firenze

Email: francesco.bonechi@fi.infn.it
意大利, Firenze

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016