Rogers Semilattices for Families of Equivalence Relations in the Ershov Hierarchy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper studies Rogers semilattices for families of equivalence relations in the Ershov hierarchy. For an arbitrary notation a of a nonzero computable ordinal, we consider \(\sum\nolimits_a^{- 1} {}\)-computable numberings of the family of all \(\sum\nolimits_a^{- 1} {}\) equivalence relations. We show that this family has infinitely many pairwise incomparable Friedberg numberings and infinitely many pairwise incomparable positive undecidable numberings. We prove that the family of all c.e. equivalence relations has infinitely many pairwise incomparable minimal nonpositive numberings. Moreover, we show that there are infinitely many principal ideals without minimal numberings.

作者简介

N. Bazhenov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: bazhenov@math.nsc.ru
俄罗斯联邦, Novosibirsk

B. Kalmurzaev

Al-Farabi Kazakh National University

编辑信件的主要联系方式.
Email: birzhan.kalmurzayev@gmail.com
哈萨克斯坦, Almaty

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019