Rogers Semilattices for Families of Equivalence Relations in the Ershov Hierarchy
- 作者: Bazhenov N.A.1, Kalmurzaev B.S.2
-
隶属关系:
- Sobolev Institute of Mathematics
- Al-Farabi Kazakh National University
- 期: 卷 60, 编号 2 (2019)
- 页面: 223-234
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172300
- DOI: https://doi.org/10.1134/S0037446619020046
- ID: 172300
如何引用文章
详细
The paper studies Rogers semilattices for families of equivalence relations in the Ershov hierarchy. For an arbitrary notation a of a nonzero computable ordinal, we consider \(\sum\nolimits_a^{- 1} {}\)-computable numberings of the family of all \(\sum\nolimits_a^{- 1} {}\) equivalence relations. We show that this family has infinitely many pairwise incomparable Friedberg numberings and infinitely many pairwise incomparable positive undecidable numberings. We prove that the family of all c.e. equivalence relations has infinitely many pairwise incomparable minimal nonpositive numberings. Moreover, we show that there are infinitely many principal ideals without minimal numberings.
作者简介
N. Bazhenov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: bazhenov@math.nsc.ru
俄罗斯联邦, Novosibirsk
B. Kalmurzaev
Al-Farabi Kazakh National University
编辑信件的主要联系方式.
Email: birzhan.kalmurzayev@gmail.com
哈萨克斯坦, Almaty
补充文件
