Rogers Semilattices for Families of Equivalence Relations in the Ershov Hierarchy
- Авторы: Bazhenov N.A.1, Kalmurzaev B.S.2
-
Учреждения:
- Sobolev Institute of Mathematics
- Al-Farabi Kazakh National University
- Выпуск: Том 60, № 2 (2019)
- Страницы: 223-234
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172300
- DOI: https://doi.org/10.1134/S0037446619020046
- ID: 172300
Цитировать
Аннотация
The paper studies Rogers semilattices for families of equivalence relations in the Ershov hierarchy. For an arbitrary notation a of a nonzero computable ordinal, we consider \(\sum\nolimits_a^{- 1} {}\)-computable numberings of the family of all \(\sum\nolimits_a^{- 1} {}\) equivalence relations. We show that this family has infinitely many pairwise incomparable Friedberg numberings and infinitely many pairwise incomparable positive undecidable numberings. We prove that the family of all c.e. equivalence relations has infinitely many pairwise incomparable minimal nonpositive numberings. Moreover, we show that there are infinitely many principal ideals without minimal numberings.
Об авторах
N. Bazhenov
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: bazhenov@math.nsc.ru
Россия, Novosibirsk
B. Kalmurzaev
Al-Farabi Kazakh National University
Автор, ответственный за переписку.
Email: birzhan.kalmurzayev@gmail.com
Казахстан, Almaty
Дополнительные файлы
