Rogers Semilattices for Families of Equivalence Relations in the Ershov Hierarchy
- Авторлар: Bazhenov N.A.1, Kalmurzaev B.S.2
-
Мекемелер:
- Sobolev Institute of Mathematics
- Al-Farabi Kazakh National University
- Шығарылым: Том 60, № 2 (2019)
- Беттер: 223-234
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172300
- DOI: https://doi.org/10.1134/S0037446619020046
- ID: 172300
Дәйексөз келтіру
Аннотация
The paper studies Rogers semilattices for families of equivalence relations in the Ershov hierarchy. For an arbitrary notation a of a nonzero computable ordinal, we consider \(\sum\nolimits_a^{- 1} {}\)-computable numberings of the family of all \(\sum\nolimits_a^{- 1} {}\) equivalence relations. We show that this family has infinitely many pairwise incomparable Friedberg numberings and infinitely many pairwise incomparable positive undecidable numberings. We prove that the family of all c.e. equivalence relations has infinitely many pairwise incomparable minimal nonpositive numberings. Moreover, we show that there are infinitely many principal ideals without minimal numberings.
Авторлар туралы
N. Bazhenov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, Novosibirsk
B. Kalmurzaev
Al-Farabi Kazakh National University
Хат алмасуға жауапты Автор.
Email: birzhan.kalmurzayev@gmail.com
Қазақстан, Almaty
Қосымша файлдар
