Rogers Semilattices for Families of Equivalence Relations in the Ershov Hierarchy


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper studies Rogers semilattices for families of equivalence relations in the Ershov hierarchy. For an arbitrary notation a of a nonzero computable ordinal, we consider \(\sum\nolimits_a^{- 1} {}\)-computable numberings of the family of all \(\sum\nolimits_a^{- 1} {}\) equivalence relations. We show that this family has infinitely many pairwise incomparable Friedberg numberings and infinitely many pairwise incomparable positive undecidable numberings. We prove that the family of all c.e. equivalence relations has infinitely many pairwise incomparable minimal nonpositive numberings. Moreover, we show that there are infinitely many principal ideals without minimal numberings.

Sobre autores

N. Bazhenov

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: bazhenov@math.nsc.ru
Rússia, Novosibirsk

B. Kalmurzaev

Al-Farabi Kazakh National University

Autor responsável pela correspondência
Email: birzhan.kalmurzayev@gmail.com
Cazaquistão, Almaty

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019