The Franz-Keldysh effect in silicon–ultrathin (3.7 nm) oxide–polysilicon structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The manifestation of the Franz–Keldysh effect was discovered when illuminated by indirect daylight Al–n+-Si:P–SiO2–(100) n-Si structures with ultrathin (3.7 nm) oxide. It has been shown that the use of backlight even at low field voltages (up to 3 V) leads to an increase in the tunneling current through the oxide compared to the current in darkness by three orders of magnitude. A model of the influence of radiation on the process of electron tunneling through an ultrathin insulating layer has been constructed. At first as a result of the Franz–Keldysh effect, a radiation quantum is captured by an electron and this charge carrier tunnels through the barrier at a higher level compared to darkness. After a charge carrier enters a semiconductor, its energy is sufficient for several events of electron–hole pair production during impact ionization of silicon.

作者简介

D. Belorusov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

E. Goldman

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

G. Chucheva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

编辑信件的主要联系方式.
Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

参考

  1. Zwanenburg F.A., Dzurak A.S., Simmons M.Y. et al. // Rev. Mod. Phys. 2013. V. 85. № 3. P. 961.
  2. Векслер М.И., Грехов И.В., Шулекин А.Ф. // ФТП. 2000. Т. 34. № 7. С. 803.
  3. Ждан А.Г., Чучева Г.В., Гольдман Е.И. // ФТП. 2006. Т. 40. № 2. С. 195.
  4. Гольдман Е.И., Левашов С.А., Чучева Г.В. // ФТП. 2019. Т. 53. № 4. С. 481.
  5. Белорусов Д.А., Гольдман Е.И., Нарышкина В.Г., Чучева Г.В. // ФТП. 2021. Т. 55. № 1. С. 24.
  6. Гольдман Е.И., Левашова А.И., Левашов С.А., Чучева Г.В. // ФТП. 2015. Т. 49. № 4. С. 483.
  7. Гольдман Е.И., Левашов С.А., Нарышкина В.Г., Чучева Г.В. // ФТП. 2017. Т. 51. № 9. С. 1185.
  8. Гольдман Е.И., Кухарская Н.Ф., Левашов С.А., Чучева Г.В. // ФТП. 2019. Т. 53. № 1. С. 46.
  9. Franz W. // Z. Naturforschung. 1958. V. 13a. № 2. P. 484.
  10. Келдыш Л.В. // ЖЭТФ. 1957. Т. 33. № 4. С. 994.
  11. Жёлтиков А.М. // Успехи физ. наук. 2017. Т. 187. № 11. С. 1169.
  12. Гольдман Е.И., Ждан А.Г., Кухарская Н.Ф., Черняев М.В. // ФТП. 2008. Т. 42. № 1. С. 94.
  13. Гольдман Е.И., Чучева Г.В., Шушарин И.А. // ФТП. 2022. Т. 56. № 3. С. 328.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (41KB)
3.

下载 (43KB)
4.

下载 (61KB)
5.

下载 (87KB)

版权所有 © Д.А. Белорусов, Е.И. Гольдман, Г.В. Чучева, 2023

##common.cookie##