The Franz-Keldysh effect in silicon–ultrathin (3.7 nm) oxide–polysilicon structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The manifestation of the Franz–Keldysh effect was discovered when illuminated by indirect daylight Al–n+-Si:P–SiO2–(100) n-Si structures with ultrathin (3.7 nm) oxide. It has been shown that the use of backlight even at low field voltages (up to 3 V) leads to an increase in the tunneling current through the oxide compared to the current in darkness by three orders of magnitude. A model of the influence of radiation on the process of electron tunneling through an ultrathin insulating layer has been constructed. At first as a result of the Franz–Keldysh effect, a radiation quantum is captured by an electron and this charge carrier tunnels through the barrier at a higher level compared to darkness. After a charge carrier enters a semiconductor, its energy is sufficient for several events of electron–hole pair production during impact ionization of silicon.

Sobre autores

D. Belorusov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

E. Goldman

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

G. Chucheva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Autor responsável pela correspondência
Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

Bibliografia

  1. Zwanenburg F.A., Dzurak A.S., Simmons M.Y. et al. // Rev. Mod. Phys. 2013. V. 85. № 3. P. 961.
  2. Векслер М.И., Грехов И.В., Шулекин А.Ф. // ФТП. 2000. Т. 34. № 7. С. 803.
  3. Ждан А.Г., Чучева Г.В., Гольдман Е.И. // ФТП. 2006. Т. 40. № 2. С. 195.
  4. Гольдман Е.И., Левашов С.А., Чучева Г.В. // ФТП. 2019. Т. 53. № 4. С. 481.
  5. Белорусов Д.А., Гольдман Е.И., Нарышкина В.Г., Чучева Г.В. // ФТП. 2021. Т. 55. № 1. С. 24.
  6. Гольдман Е.И., Левашова А.И., Левашов С.А., Чучева Г.В. // ФТП. 2015. Т. 49. № 4. С. 483.
  7. Гольдман Е.И., Левашов С.А., Нарышкина В.Г., Чучева Г.В. // ФТП. 2017. Т. 51. № 9. С. 1185.
  8. Гольдман Е.И., Кухарская Н.Ф., Левашов С.А., Чучева Г.В. // ФТП. 2019. Т. 53. № 1. С. 46.
  9. Franz W. // Z. Naturforschung. 1958. V. 13a. № 2. P. 484.
  10. Келдыш Л.В. // ЖЭТФ. 1957. Т. 33. № 4. С. 994.
  11. Жёлтиков А.М. // Успехи физ. наук. 2017. Т. 187. № 11. С. 1169.
  12. Гольдман Е.И., Ждан А.Г., Кухарская Н.Ф., Черняев М.В. // ФТП. 2008. Т. 42. № 1. С. 94.
  13. Гольдман Е.И., Чучева Г.В., Шушарин И.А. // ФТП. 2022. Т. 56. № 3. С. 328.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (41KB)
3.

Baixar (43KB)
4.

Baixar (61KB)
5.

Baixar (87KB)

Declaração de direitos autorais © Д.А. Белорусов, Е.И. Гольдман, Г.В. Чучева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies