Metal–semiconductor–metal detectors ZnS/GaP for the ultraviolet and visible part of the spectrum with electrically tunable spectral photosensitivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-quality ZnS epitaxial layers grown on GaP semiconductor substrates by MOCVD method. Photodetectors of the visible and UV parts of the spectrum based on new interdigitated Schottky barrier metal–semiconductor–metal (MSM) contacts to semiconductor structure ZnS/GaP. The detectors exhibit low dark current values. The dependence of the characteristics of the spectral response of detectors on voltage has been established offsets. It was found that the long-wavelength response boundary of ZnS/GaP MSM detectors can shift from 355 to 450 nm when the bias voltage changes from 10 to 30 V. At the maximum photosensitivity wavelength of 450 nm, the ampere-watt sensitivity of the detector was 0.3 A/W at a bias voltage of 60 V, and the quantum efficiency was 82%.

About the authors

S. V. Averin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. A. Zhitov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

L. Yu. Zakharov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. M. Kotov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

M. P. Temiryazeva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Author for correspondence.
Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

References

  1. Lin C., Lu Y., Tian Y. et al. // Opt. Express. 2019. V. 27. № 21. P. 29962.
  2. Monroy E., Omnes F., Calle F. // Semicond. Sci. Technol. 2003. V. 18. № 4. P. R33.
  3. Бланк Т.Б., Гольдберг Ю.А. // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.
  4. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. Article No. 105417.
  5. Vigue F., Tournie E., Faurie J.-P. // Electron. Lett. 2000. V. 36. № 4. P. 352.
  6. Monroy E., Vigue F., Calle F. et al. // Appl. Phys. Lett. 2000. V. 77. № 17. P. 2761.
  7. Vigue F., Tournie E., Faurie J.-P. // IEEE J. Quant. Electron. 2001. V. 37. № 9. P. 1146.
  8. Chen W.-R., Meen T.-H., Cheng Y.-Ch. // IEEE Electron Device Lett. 2006. V. 27. № 25. P. 347.
  9. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. P. 105417.
  10. Синицкая О.А., Шубина К.Ю., Мохов Д.В. и др. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. С. 157.
  11. Soole J.B.D., Schumaher H. // IEEE J. Quantum Electron. 1991. V. 27. № 3. P. 737.
  12. Аверин С.В., Гуляев Ю.В., Дмитриев М.Д. и др. // Квантов. электроника. 1996. Т. 23. № 3. С. 284.
  13. Аверин С.В., Кузнецов П.И., Житов В.А. и др. // Физика и техника полупроводников. 2015. Т. 49. № 11. С. 1441.
  14. Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. M.: Мир, 1981. С. 379.
  15. Aspnes D.E., Studna A.A. // Phys. Rev. B. 1983. V. 27. № 2. P. 985.
  16. Averine S.V., Chan Y.C., Lam Y.L. // Solid State Electron. 2001. V. 45. № 3. P. 441.
  17. Аверин С.В., Кузнецов П.И., Алкеев Н.В. // Журн. технич. физики. 2009. Т. 79. № 10. С. 89.
  18. Averin S.V., Kuznetzov P.I., Zhitov V.A. et al. // Solid State Electron. 2015. V. 114. P. 135.
  19. Averin S.V., Sachot R. // Solid State Electron. 2000. V. 44. № 9. P. 1627.
  20. Lee I.-H. // Phys. Status Solidi A. 2002. V. 192. № 1. P. R4.
  21. Kim D.-W., Chea K.-S., Park Y.-J. et al. // Phys. Status Solidi. 2004. V. A201. P. 2686.
  22. Liu K.W., Ma J.G., Zhang J.Y. et al. // Solid State Electron. 2007. V. 51. № 5. P. 757.
  23. Janow N.N., Yam F.K., Thahab S.M. et al. // Current Appl. Phys. 2010. V. 10. P. 1452.
  24. Chang S.J., Su Y.K., Chen W.R. et al. // IEEE Photonics Technol. Lett. 2002. V.14. № 2. P. 188.
  25. Yan Z., Jinglan S., Nili W. et al. // J. Semiconductors. 2010. V. 31. № 12. P. 124015.
  26. Zhang Z., Wenckstern H., Schmidt M., Grundmann M. // Appl. Phys. Lett. 2011. V. 99. № 8. P. 083502.
  27. Rhoderick E.H., Williams R.H. Metal-Semiconductor Contacts: Oxford: Univ. Press, 1988.
  28. So I.K., Ma H., Zhang Z.Q., Wong G.K.L. // Appl. Phys. Lett. 2000. V. 76. № 9. P. 1098.
  29. Sou I.K., Wu M.C.W., Sun T. et al. // J. Electronic Mater. 2001. V. 30. № 6. P. 673.
  30. Lin T.K., Chang S.J., Su Y.K. et al. // Mater. Sci. Engineering B. 2005. V. 119. № 2. P. 202.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (312KB)
3.

Download (86KB)
4.

Download (113KB)
5.

Download (267KB)
6.

Download (59KB)
7.

Download (222KB)

Copyright (c) 2023 С.В. Аверин, В.А. Житов, Л.Ю. Захаров, В.М. Котов, М.П. Темирязева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies