Metal–semiconductor–metal detectors ZnS/GaP for the ultraviolet and visible part of the spectrum with electrically tunable spectral photosensitivity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

High-quality ZnS epitaxial layers grown on GaP semiconductor substrates by MOCVD method. Photodetectors of the visible and UV parts of the spectrum based on new interdigitated Schottky barrier metal–semiconductor–metal (MSM) contacts to semiconductor structure ZnS/GaP. The detectors exhibit low dark current values. The dependence of the characteristics of the spectral response of detectors on voltage has been established offsets. It was found that the long-wavelength response boundary of ZnS/GaP MSM detectors can shift from 355 to 450 nm when the bias voltage changes from 10 to 30 V. At the maximum photosensitivity wavelength of 450 nm, the ampere-watt sensitivity of the detector was 0.3 A/W at a bias voltage of 60 V, and the quantum efficiency was 82%.

作者简介

S. Averin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. Zhitov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

L. Zakharov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. Kotov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

M. Temiryazeva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

编辑信件的主要联系方式.
Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

参考

  1. Lin C., Lu Y., Tian Y. et al. // Opt. Express. 2019. V. 27. № 21. P. 29962.
  2. Monroy E., Omnes F., Calle F. // Semicond. Sci. Technol. 2003. V. 18. № 4. P. R33.
  3. Бланк Т.Б., Гольдберг Ю.А. // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.
  4. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. Article No. 105417.
  5. Vigue F., Tournie E., Faurie J.-P. // Electron. Lett. 2000. V. 36. № 4. P. 352.
  6. Monroy E., Vigue F., Calle F. et al. // Appl. Phys. Lett. 2000. V. 77. № 17. P. 2761.
  7. Vigue F., Tournie E., Faurie J.-P. // IEEE J. Quant. Electron. 2001. V. 37. № 9. P. 1146.
  8. Chen W.-R., Meen T.-H., Cheng Y.-Ch. // IEEE Electron Device Lett. 2006. V. 27. № 25. P. 347.
  9. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. P. 105417.
  10. Синицкая О.А., Шубина К.Ю., Мохов Д.В. и др. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. С. 157.
  11. Soole J.B.D., Schumaher H. // IEEE J. Quantum Electron. 1991. V. 27. № 3. P. 737.
  12. Аверин С.В., Гуляев Ю.В., Дмитриев М.Д. и др. // Квантов. электроника. 1996. Т. 23. № 3. С. 284.
  13. Аверин С.В., Кузнецов П.И., Житов В.А. и др. // Физика и техника полупроводников. 2015. Т. 49. № 11. С. 1441.
  14. Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. M.: Мир, 1981. С. 379.
  15. Aspnes D.E., Studna A.A. // Phys. Rev. B. 1983. V. 27. № 2. P. 985.
  16. Averine S.V., Chan Y.C., Lam Y.L. // Solid State Electron. 2001. V. 45. № 3. P. 441.
  17. Аверин С.В., Кузнецов П.И., Алкеев Н.В. // Журн. технич. физики. 2009. Т. 79. № 10. С. 89.
  18. Averin S.V., Kuznetzov P.I., Zhitov V.A. et al. // Solid State Electron. 2015. V. 114. P. 135.
  19. Averin S.V., Sachot R. // Solid State Electron. 2000. V. 44. № 9. P. 1627.
  20. Lee I.-H. // Phys. Status Solidi A. 2002. V. 192. № 1. P. R4.
  21. Kim D.-W., Chea K.-S., Park Y.-J. et al. // Phys. Status Solidi. 2004. V. A201. P. 2686.
  22. Liu K.W., Ma J.G., Zhang J.Y. et al. // Solid State Electron. 2007. V. 51. № 5. P. 757.
  23. Janow N.N., Yam F.K., Thahab S.M. et al. // Current Appl. Phys. 2010. V. 10. P. 1452.
  24. Chang S.J., Su Y.K., Chen W.R. et al. // IEEE Photonics Technol. Lett. 2002. V.14. № 2. P. 188.
  25. Yan Z., Jinglan S., Nili W. et al. // J. Semiconductors. 2010. V. 31. № 12. P. 124015.
  26. Zhang Z., Wenckstern H., Schmidt M., Grundmann M. // Appl. Phys. Lett. 2011. V. 99. № 8. P. 083502.
  27. Rhoderick E.H., Williams R.H. Metal-Semiconductor Contacts: Oxford: Univ. Press, 1988.
  28. So I.K., Ma H., Zhang Z.Q., Wong G.K.L. // Appl. Phys. Lett. 2000. V. 76. № 9. P. 1098.
  29. Sou I.K., Wu M.C.W., Sun T. et al. // J. Electronic Mater. 2001. V. 30. № 6. P. 673.
  30. Lin T.K., Chang S.J., Su Y.K. et al. // Mater. Sci. Engineering B. 2005. V. 119. № 2. P. 202.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (312KB)
3.

下载 (86KB)
4.

下载 (113KB)
5.

下载 (267KB)
6.

下载 (59KB)
7.

下载 (222KB)

版权所有 © С.В. Аверин, В.А. Житов, Л.Ю. Захаров, В.М. Котов, М.П. Темирязева, 2023

##common.cookie##