Metal–semiconductor–metal detectors ZnS/GaP for the ultraviolet and visible part of the spectrum with electrically tunable spectral photosensitivity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

High-quality ZnS epitaxial layers grown on GaP semiconductor substrates by MOCVD method. Photodetectors of the visible and UV parts of the spectrum based on new interdigitated Schottky barrier metal–semiconductor–metal (MSM) contacts to semiconductor structure ZnS/GaP. The detectors exhibit low dark current values. The dependence of the characteristics of the spectral response of detectors on voltage has been established offsets. It was found that the long-wavelength response boundary of ZnS/GaP MSM detectors can shift from 355 to 450 nm when the bias voltage changes from 10 to 30 V. At the maximum photosensitivity wavelength of 450 nm, the ampere-watt sensitivity of the detector was 0.3 A/W at a bias voltage of 60 V, and the quantum efficiency was 82%.

Sobre autores

S. Averin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. Zhitov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

L. Zakharov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

V. Kotov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

M. Temiryazeva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Autor responsável pela correspondência
Email: sva278@ire216.msk.su
Fryazino, Moscow oblast, 141190 Russia

Bibliografia

  1. Lin C., Lu Y., Tian Y. et al. // Opt. Express. 2019. V. 27. № 21. P. 29962.
  2. Monroy E., Omnes F., Calle F. // Semicond. Sci. Technol. 2003. V. 18. № 4. P. R33.
  3. Бланк Т.Б., Гольдберг Ю.А. // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.
  4. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. Article No. 105417.
  5. Vigue F., Tournie E., Faurie J.-P. // Electron. Lett. 2000. V. 36. № 4. P. 352.
  6. Monroy E., Vigue F., Calle F. et al. // Appl. Phys. Lett. 2000. V. 77. № 17. P. 2761.
  7. Vigue F., Tournie E., Faurie J.-P. // IEEE J. Quant. Electron. 2001. V. 37. № 9. P. 1146.
  8. Chen W.-R., Meen T.-H., Cheng Y.-Ch. // IEEE Electron Device Lett. 2006. V. 27. № 25. P. 347.
  9. Qin Z., Song D., Xu Zh. et al. // Organic Electron. 2020. V. 76. P. 105417.
  10. Синицкая О.А., Шубина К.Ю., Мохов Д.В. и др. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. С. 157.
  11. Soole J.B.D., Schumaher H. // IEEE J. Quantum Electron. 1991. V. 27. № 3. P. 737.
  12. Аверин С.В., Гуляев Ю.В., Дмитриев М.Д. и др. // Квантов. электроника. 1996. Т. 23. № 3. С. 284.
  13. Аверин С.В., Кузнецов П.И., Житов В.А. и др. // Физика и техника полупроводников. 2015. Т. 49. № 11. С. 1441.
  14. Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. M.: Мир, 1981. С. 379.
  15. Aspnes D.E., Studna A.A. // Phys. Rev. B. 1983. V. 27. № 2. P. 985.
  16. Averine S.V., Chan Y.C., Lam Y.L. // Solid State Electron. 2001. V. 45. № 3. P. 441.
  17. Аверин С.В., Кузнецов П.И., Алкеев Н.В. // Журн. технич. физики. 2009. Т. 79. № 10. С. 89.
  18. Averin S.V., Kuznetzov P.I., Zhitov V.A. et al. // Solid State Electron. 2015. V. 114. P. 135.
  19. Averin S.V., Sachot R. // Solid State Electron. 2000. V. 44. № 9. P. 1627.
  20. Lee I.-H. // Phys. Status Solidi A. 2002. V. 192. № 1. P. R4.
  21. Kim D.-W., Chea K.-S., Park Y.-J. et al. // Phys. Status Solidi. 2004. V. A201. P. 2686.
  22. Liu K.W., Ma J.G., Zhang J.Y. et al. // Solid State Electron. 2007. V. 51. № 5. P. 757.
  23. Janow N.N., Yam F.K., Thahab S.M. et al. // Current Appl. Phys. 2010. V. 10. P. 1452.
  24. Chang S.J., Su Y.K., Chen W.R. et al. // IEEE Photonics Technol. Lett. 2002. V.14. № 2. P. 188.
  25. Yan Z., Jinglan S., Nili W. et al. // J. Semiconductors. 2010. V. 31. № 12. P. 124015.
  26. Zhang Z., Wenckstern H., Schmidt M., Grundmann M. // Appl. Phys. Lett. 2011. V. 99. № 8. P. 083502.
  27. Rhoderick E.H., Williams R.H. Metal-Semiconductor Contacts: Oxford: Univ. Press, 1988.
  28. So I.K., Ma H., Zhang Z.Q., Wong G.K.L. // Appl. Phys. Lett. 2000. V. 76. № 9. P. 1098.
  29. Sou I.K., Wu M.C.W., Sun T. et al. // J. Electronic Mater. 2001. V. 30. № 6. P. 673.
  30. Lin T.K., Chang S.J., Su Y.K. et al. // Mater. Sci. Engineering B. 2005. V. 119. № 2. P. 202.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (312KB)
3.

Baixar (86KB)
4.

Baixar (113KB)
5.

Baixar (267KB)
6.

Baixar (59KB)
7.

Baixar (222KB)

Declaração de direitos autorais © С.В. Аверин, В.А. Житов, Л.Ю. Захаров, В.М. Котов, М.П. Темирязева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies