Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.

作者简介

A. Seleznev

Institute of Applied Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aseleznev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Gavrilov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

D. Mukhin

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

E. Loskutov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Feigin

Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod

Email: aseleznev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019