Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks
- Авторы: Seleznev A.F.1, Gavrilov A.S.1, Mukhin D.N.1, Loskutov E.M.1, Feigin A.M.1,2
-
Учреждения:
- Institute of Applied Physics of the Russian Academy of Sciences
- N. I. Lobachevsky State University of Nizhny Novgorod
- Выпуск: Том 61, № 12 (2019)
- Страницы: 893-907
- Раздел: Article
- URL: https://journals.rcsi.science/0033-8443/article/view/243936
- DOI: https://doi.org/10.1007/s11141-019-09945-2
- ID: 243936
Цитировать
Аннотация
We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.
Об авторах
A. Seleznev
Institute of Applied Physics of the Russian Academy of Sciences
Автор, ответственный за переписку.
Email: aseleznev@ipfran.ru
Россия, Nizhny Novgorod
A. Gavrilov
Institute of Applied Physics of the Russian Academy of Sciences
Email: aseleznev@ipfran.ru
Россия, Nizhny Novgorod
D. Mukhin
Institute of Applied Physics of the Russian Academy of Sciences
Email: aseleznev@ipfran.ru
Россия, Nizhny Novgorod
E. Loskutov
Institute of Applied Physics of the Russian Academy of Sciences
Email: aseleznev@ipfran.ru
Россия, Nizhny Novgorod
A. Feigin
Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod
Email: aseleznev@ipfran.ru
Россия, Nizhny Novgorod; Nizhny Novgorod
Дополнительные файлы
