Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks
- Autores: Seleznev A.F.1, Gavrilov A.S.1, Mukhin D.N.1, Loskutov E.M.1, Feigin A.M.1,2
- 
							Afiliações: 
							- Institute of Applied Physics of the Russian Academy of Sciences
- N. I. Lobachevsky State University of Nizhny Novgorod
 
- Edição: Volume 61, Nº 12 (2019)
- Páginas: 893-907
- Seção: Article
- URL: https://journals.rcsi.science/0033-8443/article/view/243936
- DOI: https://doi.org/10.1007/s11141-019-09945-2
- ID: 243936
Citar
Resumo
We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.
Sobre autores
A. Seleznev
Institute of Applied Physics of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: aseleznev@ipfran.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Gavrilov
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
D. Mukhin
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
E. Loskutov
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Feigin
Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod; Nizhny Novgorod						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					