Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks
- Авторы: Seleznev A.F.1, Gavrilov A.S.1, Mukhin D.N.1, Loskutov E.M.1, Feigin A.M.1,2
- 
							Учреждения: 
							- Institute of Applied Physics of the Russian Academy of Sciences
- N. I. Lobachevsky State University of Nizhny Novgorod
 
- Выпуск: Том 61, № 12 (2019)
- Страницы: 893-907
- Раздел: Article
- URL: https://journals.rcsi.science/0033-8443/article/view/243936
- DOI: https://doi.org/10.1007/s11141-019-09945-2
- ID: 243936
Цитировать
Аннотация
We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.
Об авторах
A. Seleznev
Institute of Applied Physics of the Russian Academy of Sciences
							Автор, ответственный за переписку.
							Email: aseleznev@ipfran.ru
				                					                																			                												                	Россия, 							Nizhny Novgorod						
A. Gavrilov
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Россия, 							Nizhny Novgorod						
D. Mukhin
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Россия, 							Nizhny Novgorod						
E. Loskutov
Institute of Applied Physics of the Russian Academy of Sciences
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Россия, 							Nizhny Novgorod						
A. Feigin
Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod
														Email: aseleznev@ipfran.ru
				                					                																			                												                	Россия, 							Nizhny Novgorod; Nizhny Novgorod						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					