Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.

Авторлар туралы

A. Seleznev

Institute of Applied Physics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: aseleznev@ipfran.ru
Ресей, Nizhny Novgorod

A. Gavrilov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Ресей, Nizhny Novgorod

D. Mukhin

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Ресей, Nizhny Novgorod

E. Loskutov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Ресей, Nizhny Novgorod

A. Feigin

Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod

Email: aseleznev@ipfran.ru
Ресей, Nizhny Novgorod; Nizhny Novgorod

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019