Biotechnological Potential of the Soil Microbiome

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Manucharova

Moscow State University

Хат алмасуға жауапты Автор.
Email: manucharova@mail.ru
Ресей, Moscow, 119991

A. Vlasova

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

M. Kovalenko

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

E. Ovchinnikova

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

A. Babenko

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

G. Teregulova

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

G. Uvarov

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

A. Stepanov

Moscow State University

Email: manucharova@mail.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Bürgmann H., Widmer F., Sigler W.V., Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil // Appl. Environ. Microbiol. 2003. V. 69. P. 1928‒1935. https://doi.org/10.1128/AEM.69.4.1928-1935.2003
  2. Hallin S., Jones C.M., Schloter M., Philippot L. Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment // ISME J. 2009. V. 53. P. 597‒605.
  3. https://doi.org/10.1038/ismej.2008.128
  4. Hendrickx B., Junca H., Vosahlova J., Lindner A., Ruegg I., Bucheli-Witschel M., Faber F., Egli T., Mau M., Pieper, D.H., Top E.M., Dejonghe W., Bastiaens L., Springael D. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site // J. Microbiol. Meth. 2006. V. 64. P. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018
  5. Henry S., Baudouin E., López-Gutiérrez J.C., Martin-Laurent F., Brauman A., Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR // J. Microbiol. Meth. 2004. V. 59. P. 327‒335.
  6. https://doi.org/10.1016/J.MIMET.2004.07.002
  7. Gogmachadze L.G., Khusnetdinova K.A., Stepanov A.L., Kravchenko I.K. Microcosm study of ammonium and drying impact on methane oxidation in agricultural soil // J. Agric. Environ. 2023. V. 36. P. 10‒22. https://doi.org/10.23649/JAE.2023.36.7
  8. Langille M., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J., Clemente J., Burkepile D., Vega Thurber R., Knight R., Beiko R., Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences // Nat. Biotechnol. 2013. V. 31. P. 814–821.
  9. https://doi.org/10.1038/nbt.2676
  10. Manucharova N.A., Pozdnyakov L.A., Vlasova A.P., Yanovich A.S., Ksenofontova N.A., Kovalenko M.A., Stepanov P.Y., Gennadiev A.N., Golovchenko A.V., Stepanov A.L. Metabolically active prokaryotic complex in grassland and forests’ sod-podzol under polycyclic aromatic hydrocarbon influence // Forests. 2021. V. 12. P С. 1103‒1117.
  11. https://doi.org/10.3390/f12081103
  12. Manucharova N.A., Ksenofontova N.A., Belov A.A., Kamenskiy N.N., Arzamazova A.V., Zenova G.M., Kinzhaev R.R., Trofimov S.Y., Stepanov A.L. Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity // Euras. Soil Sci. 2021. V. 54. P. 89–97.
  13. https://doi.org/10.31857/s0032180x2101010x
  14. Markowitz V.M., Chen I.-M.A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J., Williams P., Huntemann M., Anderson I., Mavromatis K., Ivanova N.N., Kyrpides N.C. IMG: the Integrated Microbial Genomes database and comparative analysis system // Nucl. Acids Res. 2012. V. 40. Database iss. P. D115‒D122.
  15. https://doi.org/10.1093/nar/gkr1044
  16. Samarghandi M.R., Arabestani M.R., Zafari D., Rahmani A.R., Afkhami A., Godini K. Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria // Global NEST J. 2018. V. 20. P. 432–438.
  17. Sutton N.B., Maphosa F., Morillo J.A., Al-Soud W.A., Langenhoff A.A.M., Grotenhuis T., Rijnaarts H.H.M., Smidt H. Impact of long-term diesel contamination on soil microbial community structure // Appl. Environ. Microbiol. 2013. V. 79. P. 619–630.
  18. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy // Appl. Environ. Microbiol. 2007. V. 73. P. 5261–5267.
  19. https://doi.org/10.1128/AEM.00062-07
  20. Wang Q., Duan B., Yang R., Zhao Y., Zhang L. Screening and identification of chitinolytic actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi // J. Biosci. Medic. 2015 V. 3. P. 56065. https://doi.org/10.4236/jbm.2015.33009

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Principal component analysis using the Bray–Curtis metric of the structure of prokaryotic communities of the studied samples with the addition of substrates (chitin biopolymer or hydrocarbons).

Жүктеу (109KB)
3. 2. Biodegradation of xenobiotics: A — aminobenzoate; B — benzoate; C — caprolactams; D — chloroalkanes/chloroalkenes; E — chlorocyclohexane/chlorobenzene; F — naphthalene; G — PAHs. The studied samples: 1 ‒ chernozem; 2 ‒ chernozem incubated with a resource; 3 — chestnut soil with a resource; 4 — chestnut soil; 5 — sod-podzolic soil incubated with a resource; 6 ‒ sod-podzolic soil; 7 ‒ permafrost; 8 ‒ permafrost incubated with a resource.

Жүктеу (116KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>