Biotechnological Potential of the Soil Microbiome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.

Full Text

Restricted Access

About the authors

N. A. Manucharova

Moscow State University

Author for correspondence.
Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

A. P. Vlasova

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

M. A. Kovalenko

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

E. A. Ovchinnikova

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

A. D. Babenko

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

G. A. Teregulova

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

G. V. Uvarov

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

A. L. Stepanov

Moscow State University

Email: manucharova@mail.ru
Russian Federation, Moscow, 119991

References

  1. Bürgmann H., Widmer F., Sigler W.V., Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil // Appl. Environ. Microbiol. 2003. V. 69. P. 1928‒1935. https://doi.org/10.1128/AEM.69.4.1928-1935.2003
  2. Hallin S., Jones C.M., Schloter M., Philippot L. Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment // ISME J. 2009. V. 53. P. 597‒605.
  3. https://doi.org/10.1038/ismej.2008.128
  4. Hendrickx B., Junca H., Vosahlova J., Lindner A., Ruegg I., Bucheli-Witschel M., Faber F., Egli T., Mau M., Pieper, D.H., Top E.M., Dejonghe W., Bastiaens L., Springael D. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site // J. Microbiol. Meth. 2006. V. 64. P. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018
  5. Henry S., Baudouin E., López-Gutiérrez J.C., Martin-Laurent F., Brauman A., Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR // J. Microbiol. Meth. 2004. V. 59. P. 327‒335.
  6. https://doi.org/10.1016/J.MIMET.2004.07.002
  7. Gogmachadze L.G., Khusnetdinova K.A., Stepanov A.L., Kravchenko I.K. Microcosm study of ammonium and drying impact on methane oxidation in agricultural soil // J. Agric. Environ. 2023. V. 36. P. 10‒22. https://doi.org/10.23649/JAE.2023.36.7
  8. Langille M., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J., Clemente J., Burkepile D., Vega Thurber R., Knight R., Beiko R., Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences // Nat. Biotechnol. 2013. V. 31. P. 814–821.
  9. https://doi.org/10.1038/nbt.2676
  10. Manucharova N.A., Pozdnyakov L.A., Vlasova A.P., Yanovich A.S., Ksenofontova N.A., Kovalenko M.A., Stepanov P.Y., Gennadiev A.N., Golovchenko A.V., Stepanov A.L. Metabolically active prokaryotic complex in grassland and forests’ sod-podzol under polycyclic aromatic hydrocarbon influence // Forests. 2021. V. 12. P С. 1103‒1117.
  11. https://doi.org/10.3390/f12081103
  12. Manucharova N.A., Ksenofontova N.A., Belov A.A., Kamenskiy N.N., Arzamazova A.V., Zenova G.M., Kinzhaev R.R., Trofimov S.Y., Stepanov A.L. Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity // Euras. Soil Sci. 2021. V. 54. P. 89–97.
  13. https://doi.org/10.31857/s0032180x2101010x
  14. Markowitz V.M., Chen I.-M.A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J., Williams P., Huntemann M., Anderson I., Mavromatis K., Ivanova N.N., Kyrpides N.C. IMG: the Integrated Microbial Genomes database and comparative analysis system // Nucl. Acids Res. 2012. V. 40. Database iss. P. D115‒D122.
  15. https://doi.org/10.1093/nar/gkr1044
  16. Samarghandi M.R., Arabestani M.R., Zafari D., Rahmani A.R., Afkhami A., Godini K. Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria // Global NEST J. 2018. V. 20. P. 432–438.
  17. Sutton N.B., Maphosa F., Morillo J.A., Al-Soud W.A., Langenhoff A.A.M., Grotenhuis T., Rijnaarts H.H.M., Smidt H. Impact of long-term diesel contamination on soil microbial community structure // Appl. Environ. Microbiol. 2013. V. 79. P. 619–630.
  18. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy // Appl. Environ. Microbiol. 2007. V. 73. P. 5261–5267.
  19. https://doi.org/10.1128/AEM.00062-07
  20. Wang Q., Duan B., Yang R., Zhao Y., Zhang L. Screening and identification of chitinolytic actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi // J. Biosci. Medic. 2015 V. 3. P. 56065. https://doi.org/10.4236/jbm.2015.33009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Principal component analysis using the Bray–Curtis metric of the structure of prokaryotic communities of the studied samples with the addition of substrates (chitin biopolymer or hydrocarbons).

Download (109KB)
3. 2. Biodegradation of xenobiotics: A — aminobenzoate; B — benzoate; C — caprolactams; D — chloroalkanes/chloroalkenes; E — chlorocyclohexane/chlorobenzene; F — naphthalene; G — PAHs. The studied samples: 1 ‒ chernozem; 2 ‒ chernozem incubated with a resource; 3 — chestnut soil with a resource; 4 — chestnut soil; 5 — sod-podzolic soil incubated with a resource; 6 ‒ sod-podzolic soil; 7 ‒ permafrost; 8 ‒ permafrost incubated with a resource.

Download (116KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies