Immobilization of Azospirillum Bacteria on Various Carriers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A significant part of research in environmentally friendly agroindustrial production is aimed at immobilized bacterial preparations with retained capacity for active growth without loss of metabolic activity both during immobilization and after long-term storage and biotechnological use. In the present work, immobilization of members of the genus Azospirillum on natural and synthetic carriers was investigated. Efficiency of immobilization of the cells of A. brasilense strain SR80 in alginate hydrogel and vermiculite was investigated. Proliferative and metabolic activities of immobilized preparations were investigated. The prospects of using vermiculite and calcium alginate as matrices for Azospirillum immobilization are shown.

Full Text

Restricted Access

About the authors

M. A. Kupryashina

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences; Saratov State Medical University named after V. I. Razumovsky

Author for correspondence.
Email: kupryashina_m@mail.ru
Russian Federation, Saratov; Saratov

E. G. Ponomareva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

Email: kupryashina_m@mail.ru
Russian Federation, Saratov

T. E. Pylaev

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences; Saratov State Medical University named after V. I. Razumovsky

Email: kupryashina_m@mail.ru
Russian Federation, Saratov; Saratov

References

  1. Ившина И. Б., Бердичевская М. В., Зверева Л. В. Фенотипическая характеристика алканотрофных родококков из различных экосистем // Микробиология. 1995. Т. 64. С. 507–513.
  2. Кобзев Е. Н., Петрикевич С. Б., Шкидченко А. Н. Исследование устойчивости ассоциации микроорганизмов-нефтедеструкторов в открытой системе. // Прикл. биохимия и микробиология. 2001. Т. 37. С. 413–417.
  3. Kobzev E. N., Petrikevich S. B., Shkidchenko A. N. Investigation of the stability of an association of oil-degrading microorganisms in an open system // Appl. Biochem. Microbiol. 2001. V. 37. P. 416–417.
  4. Купряшина М. А., Петров С. В., Пономарева Е. Г., Никитина В. Е. Лигнинолитическая активность бактерий родов Azospirillum and Niveispirillum // Микробиология. 2015. Т. 84. С. 691–696.
  5. Kupryashina M. A., Petrov S. V., Ponomareva E. G., Nikitina V. E. Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum // Microbiology (Moscow). 2015. V. 84. P. 791–795.
  6. Купряшина М. А., Пономарева Е. Г., Никитина В. Е. Способность бактерий рода Azospirillum к деколоризации синтетических красителей // Микробиология. 2020. Т. 89. С. 453–461.
  7. Kupryashina M. A., Ponomareva E. G., Nikitina V. E. Ability of bacteria of the genus Azospirillum to decolorize synthetic dyes // Microbiology (Moscow). 2020. V. 89. P. 451–458.
  8. Купряшина М. А., Селиванов Н. Ю., Никитина В. Е. Выделение и очистка Mn-пероксидазы Azospirillum brasilense Sp245 // Прикл. биохимия и микробиология. 2012. Т. 48. С. 23–26.
  9. Kupryashina M. A., Selivanov N. Yu., Nikitina V. E. Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245 // Appl. Biochem. Microbiol. 2012. V. 48. P. 17–20.
  10. Лейкин Ю. А., Черкасова Т. А., Смагина Н. А. Вермикулитовый сорбент для очистки воды от нефтяных углеводородов // Сорбционные и хроматографические процессы. 2009. Т. 9. № 1. С. 104‒117.
  11. Максимов А. Ю., Максимова Ю. Г., Кузнецова М. В., Олонцев В. Ф., Демаков В. А. Иммобилизация на углеродных сорбентах клеток штамма Rhodococcus ruber gt1, обладающего нитрилгидратазной активностью // Прикл. биохимия и микробиология. 2007. Т. 43. № 2. С. 193–198.
  12. Maksimov A. Yu., Maksimova Yu.G., Kuznetsova M. V., Demakov V. A., Olontsev V. F. Immobilization of Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, on carbon supports // Appl. Biochem. Microbiol. 2007. V. 43. P. 173‒177.
  13. Максимова Ю. Г., Максимов А. Ю. Иммобилизованные клетки и ферменты в биотехнологии / Учеб. пособие. — Пермь: Пермский гос. нац. исслед. ун-т, 2018. 88 с.
  14. Никитина В. Е., Ветчинкина Е. П., Пономарева Е. Г., Гоголева Ю. В. Фенолоксидазная активность бактерий рода Azospirillum // Микробиология. 2010. Т. 79. С. 344–351.
  15. Nikitina V. E., Vetchinkina E. P., Ponomareva E. G., Gogoleva Yu. V. Phenol oxidase activity in bacteria of the genus Azospirillum // Microbiology (Moscow). 2010. V. 79. P. 327–333.
  16. Beshay U., El-Enshasy H., Ismail I. M. K., Moawad H., ABD-El-Ghany S. β-Glucanase productivity improvement via cell immobilization of recombinant Escherichia coli cells in different matrices // Pol. J. Microbiol. 2011. V. 60. P. 133–138.
  17. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254.
  18. Cesari A. B., Paulucci N. S., Yslas E. I., Dardanelli M. S. Immobilization of Bradyrhizobium and Azospirillum in alginate matrix for long time of storage maintains cell viability and interaction with peanut // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 10145–10164.
  19. Chen Q., Li J., Liu M., Sun H., Bao M. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment // PLoS One. 2017. V. 12. e0174445.
  20. Fendrihan S., Constantinescu F., Sicuia O., Dinu S. Azospirillum strains as biofertilizers and biocontrol agents — a practical review // J. Adv. Agricult. 2017. V. 7. P. 1096–1108.
  21. Gombotz W. R., Wee S. F. Protein release from alginate matrices // Adv. Drug Deliv. Rev. 2012. V. 64. P. 194–205.
  22. He Y., Wu Z., Ye B., Wang Y., Guan X., Zhang J. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth // Eur. J. Soil. Biol. 2016. V. 75. P. 135–141.
  23. John R. P., Tyagi R. D., Brar S.K, Surampalli R. Y., Prevost D. Bioencapsulation of microbial cells for targeted agricultural delivery // Crit. Rev. Biotechnol. 2011. V. 31. P. 211–226.
  24. Park J. K., Chang H. N. Microencapsulation of microbial cells // Biotechnol. Adv. 2000. V. 18. P. 303–319.
  25. Paszczynski A., Crawford R. L., Huynh V.-B. Manganese peroxidase of Phanerochaete chrysosporium: purification // Methods Enzymol. 1988. V. 161. P. 264–270.
  26. Rampersad S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays // Sensors (Basel). 2012. V. 12. P. 12347–12360.
  27. Rathoreet S., Desai M. P., Liew V. C., Lai W. C., Paul W. S.H. Microencapsulation of microbial cells // J. Food Eng. 2013. P. 116. P. 369–381.
  28. Ruan B., Wu P., Chen M., Lai X., Chen L., Yu L., Gong B., Kang C., Dang Z., Shi Z., Liu Z. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors // Ecotoxicol. Environ. Saf. 2018. V. 162. P. 103–111.
  29. Tripathi A., Sami H., Jain S. R., Viloria-Cols M., Zhuravleva N., Nilsson G., Jungvid H., Kumar A. Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production // Enzyme Microb. Technol. 2010. V. 47. P. 44–51.
  30. Vejan P., Khadiran T., Abdullah R., Ismail S., Dadrasnia A. Encapsulation of plant growth promoting Rhizobacteria prospects and potential in agricultural sector: a review // J. Plant Nutr. 2019. V. 42. P. 2600–2623.
  31. Wang Q., Zhang S., Li Y., Klassen W. Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution // J. Environ. Protect. 2011. V. 2. P. 47–55.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Assessment of viability of Azospirillum cells immobilized on different carriers when sown on dense nutrient medium: a - Ca-alginate beads; b - vermiculite; c - silica gel

Download (277KB)
3. Fig. 2. Relative respiratory activity of bacterial suspension (a - calibration curve) and immobilized bacteria (b) on three types of carriers: alginate beads, vermiculite and silica gel. The lower threshold was determined by the baseline (signal/noise). The respiratory activity of bacterial suspension with OP600 = 0 was taken as 100%

Download (332KB)
4. Fig. 3. SEM images of Ca-alginate beads (a), vermiculite (b) and silica gel (c) immobilized by Azospirillum cells

Download (564KB)
5. Fig. 4. SEM images of the structure of Ca-alginate beads (a), vermiculite (b) and silica gel (c), control (1) and immobilized by Azospirillum cells (2)

Download (715KB)
6. Fig. 5. Variation of specific activity of polyphenol oxidase of suspension (1), immobilized on vermiculite (2) and on alginate beads (3) of A. brasilense SR80 cells

Download (133KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies