Effect of Hydrocarbon Pollution on the Fungal Communities of the White and Barents Sea Littoral Sediments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of hydrocarbon pollution on the fungal communities of littoral sediments of the cold-water White and Barents seas was investigated. The samples were collected at locations with different levels of pollution with oil products, from ports to relatively undisturbed areas. Using the diesel fuel-containing medium resulted in detection of hydrocarbon-degrading fungi in almost all studied samples, although in all cases they were less diverse than sugar-degrading fungi. In this relatively small group, Penicillium chrysogenum and Penicillium brevicompactum were the most common organisms. Fungal communities isolated on a sugar-containing medium exhibited higher diversity and abundance, with being the most common sugar degraders. The major factors affecting the structure of the fungal communities were the percentage of hydrocarbons in the total mass of organic carbon in the samples in the case of hydrocarbon-degrading fungi and location, for sugar degraders. In the experiment, the highest hydrocarbon-degrading activity was shown for Penicillium chrysogenum (the loss of residual hydrocarbons was 77.4%), Cadophora fastigiata (72%), and Tolypocladium inflatum (67.2%).

Full Text

Restricted Access

About the authors

A. Yu. Fadeev

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

L. A. Gavirova

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

M. L. Georgieva

Moscow State University; Gause Institute for New Antibiotics

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow; Moscow

V. V. Kozlovsky

Marine Research Center, Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

U. V. Simakova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

A. I. Shestakov

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

E. N. Bubnova

Moscow State University

Author for correspondence.
Email: katya.bubnova@wsbs-msu.ru
Russian Federation, Moscow

References

  1. Андрианов В. В., Лебедев А. А., Неверова Н. В., Лукин Л. Р., Воробьева Т. Я., Собко Е. И., Кобелев Е. А., Лисицына Т. Ю., Самохина Л. А., Климов С. И. Долговременные последствия аварийного разлива нефтепродуктов в южной части Онежского залива Белого моря // Биология моря. 2016. Т. 42. № 3. С. 169‒178.
  2. Артемчук Н. Я. Микрофлора морей СССР. М.: Наука, 1981. 192 с.
  3. Бубнова Е. Н., Коновалова О. П. Разнообразие мицелиальных грибов в грунтах литорали и сублиторали Баренцева моря (окрестности поселка Дальние Зеленцы) // Микология и фитопатология. 2018. Т. 52. № 5. С. 319‒327.
  4. Исакова Е. А., Корнейкова М. В., Мязина В. А. Численность и видовое разнообразие культивируемых микроскопических грибов побережья Баренцева моря // Микология и фитопатология. 2023. Т. 57. № 4. С. 231‒246.
  5. Марфенина О. Е. Антропогенная экология почвенных грибов. М.: Медицина для всех, 2005. 196 с.
  6. Немировская И. А. Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
  7. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403‒410.
  8. Barnes N. M., Khodse V. B., Lotlikar N. P., Meena R. M., Damare S. R. Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India // 3Biotech. 2018. V. 8. P. 1‒10.
  9. Batista-García R. A., Kumar V. V., Ariste A., Tovar-Herrera O. E., Savary O., Peidro-Guzman H., Gonzales-Abradelo D., Jackson S. A., Dobson A. D. W., Sanches-Carbente M. D. R., Folch-Mallol J. L., Leduc R., Cabana H. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents // J. Environ. Manage. 2017. V. 198. P. 1‒11.
  10. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. GenBank // Nucl. Acids Res. 2016. V. 44. Iss. D1. P. D67‒D72.
  11. Bik H. M., Halanych K. M., Sharma J., Thomas W. K. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill // PloS One. 2012. V. 7. № 6. e38550.
  12. Bovio E., Gnavi G., Prigione V., Spina F., Denaro R., Yakimov M., Calogero R., Crisafi F., Varese G. C. The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation // Sci. Total Environ. 2017. V. 576. P. 310‒318.
  13. Bubnova E. N. Fungal diversity in bottom sediments of the Kara Sea // Botanica Marina. V. 53. P. 595‒600.
  14. Bubnova E. N., Grum-Grzhimailo O.A., Kozlovsky V. V. Composition and structure of the community of mycelial fungi in the bottom sediments of the White sea // Moscow University Biol. Sci. Bull. 2020. V. 75. № 3. P. 153‒158.
  15. Chaineau C. H., Morel J., Dupont J., Oudot J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil // Sci. Total Environ. 1999. V. 227. № 2‒3. P. 237‒247.
  16. Clarke K. R., Warwick R. M. Change in marine communities: an approach to statistical analysis and interpretation. 2nd edn. Plymouth. UK: PRIMER-E, 2001. 172 p.
  17. Davies J. S., Westlake D. W.S. Crude oil utilization by fungi // Can. J. Microbiol. 1979. V. 25. P. 146‒156.
  18. Elshafie A., AlKindi A.Y., Al-Busaidi S., Bakheit C., Albahry S. N. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman // Marine Pollut. Bull. 2007. V. 54. P. 1692‒1696.
  19. Jongman R. H.G., Ter Braak C. J.F., van Tongeren O. F.R. Data analysis in community and landscape ecology. Cambridge University Press, 1995. 324 p.
  20. Khusnullina A. I., Bilanenko E. N., Kurakov A. V. Microscopic fungi of White Sea sediments // Contemp. Probl. Ecol. 2018. V. 11. P. 503‒513.
  21. Luo Y., Luo Z. H., Pang K. L. Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea // Bot. Marina. 2020. V. 63. P. 197‒207.
  22. Maamar A., Lucchesi M. E., Debaets S., van Long N. N., Quemener M., Cotton E., Bouderbala M., Burgaud G., Matallah-Boutiba A. Highlighting the crude oil bioremediation potential of marine fungi isolated from the Port of Oran (Algeria) // Diversity. 2020. V. 12. P. 196‒214.
  23. Magurran A. E. Ecological diversity and its measurement. Springer-Science and Business Media B. V., 1988. 192 p.
  24. Rämä T., Hassett B. T., Bubnova E. Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond // Bot. Marina. 2017. V. 60. Р. 433‒452.
  25. Sadaba R. B., Sarinas B. G.S. Fungal communities in bunker C oil-impacted sites off southern Guimaras, Philippines: a post-spill assessment of Solar 1 oil spill // Bot. Marina. 2010. V. 53. P. 565‒575.
  26. Simister R. L., Poutasse C. M., Thurston A. M., Reeve J. L., Baker M. C., White H. K. Degradation of oil by fungi isolated from Gulf of Mexico beaches // Mar. Pollut. Bull. 2015. V. 100. P. 327‒333.
  27. Velez P., Gasca-Pineda J., Riquelme M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons // Mar. Environ. Res. 2020. V. 153. P. 104816.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Multidimensional scaling diagram (nMDS) for the combined fungi communities according to the general anthropogenic impact (factor "Anthropogen"). WS - samples from the coast of the White Sea, BS - from the coast of the Barents Sea

Download (210KB)
3. Fig. 2. Loss of residual hydrocarbons during growth of the studied fungal isolates

Download (255KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies