Effect of Hydrocarbon Pollution on the Fungal Communities of the White and Barents Sea Littoral Sediments

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of hydrocarbon pollution on the fungal communities of littoral sediments of the cold-water White and Barents seas was investigated. The samples were collected at locations with different levels of pollution with oil products, from ports to relatively undisturbed areas. Using the diesel fuel-containing medium resulted in detection of hydrocarbon-degrading fungi in almost all studied samples, although in all cases they were less diverse than sugar-degrading fungi. In this relatively small group, Penicillium chrysogenum and Penicillium brevicompactum were the most common organisms. Fungal communities isolated on a sugar-containing medium exhibited higher diversity and abundance, with being the most common sugar degraders. The major factors affecting the structure of the fungal communities were the percentage of hydrocarbons in the total mass of organic carbon in the samples in the case of hydrocarbon-degrading fungi and location, for sugar degraders. In the experiment, the highest hydrocarbon-degrading activity was shown for Penicillium chrysogenum (the loss of residual hydrocarbons was 77.4%), Cadophora fastigiata (72%), and Tolypocladium inflatum (67.2%).

Texto integral

Acesso é fechado

Sobre autores

A. Fadeev

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

L. Gavirova

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

M. Georgieva

Moscow State University; Gause Institute for New Antibiotics

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow; Moscow

V. Kozlovsky

Marine Research Center, Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

U. Simakova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

A. Shestakov

Moscow State University

Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

E. Bubnova

Moscow State University

Autor responsável pela correspondência
Email: katya.bubnova@wsbs-msu.ru
Rússia, Moscow

Bibliografia

  1. Андрианов В. В., Лебедев А. А., Неверова Н. В., Лукин Л. Р., Воробьева Т. Я., Собко Е. И., Кобелев Е. А., Лисицына Т. Ю., Самохина Л. А., Климов С. И. Долговременные последствия аварийного разлива нефтепродуктов в южной части Онежского залива Белого моря // Биология моря. 2016. Т. 42. № 3. С. 169‒178.
  2. Артемчук Н. Я. Микрофлора морей СССР. М.: Наука, 1981. 192 с.
  3. Бубнова Е. Н., Коновалова О. П. Разнообразие мицелиальных грибов в грунтах литорали и сублиторали Баренцева моря (окрестности поселка Дальние Зеленцы) // Микология и фитопатология. 2018. Т. 52. № 5. С. 319‒327.
  4. Исакова Е. А., Корнейкова М. В., Мязина В. А. Численность и видовое разнообразие культивируемых микроскопических грибов побережья Баренцева моря // Микология и фитопатология. 2023. Т. 57. № 4. С. 231‒246.
  5. Марфенина О. Е. Антропогенная экология почвенных грибов. М.: Медицина для всех, 2005. 196 с.
  6. Немировская И. А. Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
  7. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403‒410.
  8. Barnes N. M., Khodse V. B., Lotlikar N. P., Meena R. M., Damare S. R. Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India // 3Biotech. 2018. V. 8. P. 1‒10.
  9. Batista-García R. A., Kumar V. V., Ariste A., Tovar-Herrera O. E., Savary O., Peidro-Guzman H., Gonzales-Abradelo D., Jackson S. A., Dobson A. D. W., Sanches-Carbente M. D. R., Folch-Mallol J. L., Leduc R., Cabana H. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents // J. Environ. Manage. 2017. V. 198. P. 1‒11.
  10. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. GenBank // Nucl. Acids Res. 2016. V. 44. Iss. D1. P. D67‒D72.
  11. Bik H. M., Halanych K. M., Sharma J., Thomas W. K. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill // PloS One. 2012. V. 7. № 6. e38550.
  12. Bovio E., Gnavi G., Prigione V., Spina F., Denaro R., Yakimov M., Calogero R., Crisafi F., Varese G. C. The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation // Sci. Total Environ. 2017. V. 576. P. 310‒318.
  13. Bubnova E. N. Fungal diversity in bottom sediments of the Kara Sea // Botanica Marina. V. 53. P. 595‒600.
  14. Bubnova E. N., Grum-Grzhimailo O.A., Kozlovsky V. V. Composition and structure of the community of mycelial fungi in the bottom sediments of the White sea // Moscow University Biol. Sci. Bull. 2020. V. 75. № 3. P. 153‒158.
  15. Chaineau C. H., Morel J., Dupont J., Oudot J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil // Sci. Total Environ. 1999. V. 227. № 2‒3. P. 237‒247.
  16. Clarke K. R., Warwick R. M. Change in marine communities: an approach to statistical analysis and interpretation. 2nd edn. Plymouth. UK: PRIMER-E, 2001. 172 p.
  17. Davies J. S., Westlake D. W.S. Crude oil utilization by fungi // Can. J. Microbiol. 1979. V. 25. P. 146‒156.
  18. Elshafie A., AlKindi A.Y., Al-Busaidi S., Bakheit C., Albahry S. N. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman // Marine Pollut. Bull. 2007. V. 54. P. 1692‒1696.
  19. Jongman R. H.G., Ter Braak C. J.F., van Tongeren O. F.R. Data analysis in community and landscape ecology. Cambridge University Press, 1995. 324 p.
  20. Khusnullina A. I., Bilanenko E. N., Kurakov A. V. Microscopic fungi of White Sea sediments // Contemp. Probl. Ecol. 2018. V. 11. P. 503‒513.
  21. Luo Y., Luo Z. H., Pang K. L. Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea // Bot. Marina. 2020. V. 63. P. 197‒207.
  22. Maamar A., Lucchesi M. E., Debaets S., van Long N. N., Quemener M., Cotton E., Bouderbala M., Burgaud G., Matallah-Boutiba A. Highlighting the crude oil bioremediation potential of marine fungi isolated from the Port of Oran (Algeria) // Diversity. 2020. V. 12. P. 196‒214.
  23. Magurran A. E. Ecological diversity and its measurement. Springer-Science and Business Media B. V., 1988. 192 p.
  24. Rämä T., Hassett B. T., Bubnova E. Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond // Bot. Marina. 2017. V. 60. Р. 433‒452.
  25. Sadaba R. B., Sarinas B. G.S. Fungal communities in bunker C oil-impacted sites off southern Guimaras, Philippines: a post-spill assessment of Solar 1 oil spill // Bot. Marina. 2010. V. 53. P. 565‒575.
  26. Simister R. L., Poutasse C. M., Thurston A. M., Reeve J. L., Baker M. C., White H. K. Degradation of oil by fungi isolated from Gulf of Mexico beaches // Mar. Pollut. Bull. 2015. V. 100. P. 327‒333.
  27. Velez P., Gasca-Pineda J., Riquelme M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons // Mar. Environ. Res. 2020. V. 153. P. 104816.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Multidimensional scaling diagram (nMDS) for the combined fungi communities according to the general anthropogenic impact (factor "Anthropogen"). WS - samples from the coast of the White Sea, BS - from the coast of the Barents Sea

Baixar (210KB)
3. Fig. 2. Loss of residual hydrocarbons during growth of the studied fungal isolates

Baixar (255KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies