Radiolytic modification of polymer filler for cement compositions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of preliminary irradiation (3 MeV electron beam) of powdered (≤0.2 mm) synthetic polymers (polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polyethylene terephthalate, or polystyrene) on the compressive strength of cement-sand-polymer compositions has been studied. The surface oxidation of the powders was ensured by irradiation in air or in a water-air mixture. It is shown that the oxidation of the powder in an aqueous medium, as well as the post-radiation alkalization of the powders, contribute to a higher strength of the composites. Oxidation of the powder in air leads to a relative decrease in the strength of the composite due to a higher yield of acid formation.

全文:

受限制的访问

作者简介

E. Kholodkova

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Leninsky prospekt 31(4), Moscow, 119071

Yu. Nevolin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Leninsky prospekt 31(4), Moscow, 119071

A. Shapagin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Leninsky prospekt 31(4), Moscow, 119071 Russia

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences Leninsky prospekt 31(4), Moscow, 119071

O. Grafov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Leninsky prospekt 31(4), Moscow, 119071

A. Ponomarev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Leninsky prospekt 31(4), Moscow, 119071

参考

  1. Sandanayake M., Bouras Y., Haigh R., Vrcelj Z. // Sustainability, 2020, V. 12. P. 9622. https://doi.org/10.3390/su12229622
  2. Gu L., Ozbakkaloglu T. // Waste Manag. 2016. V. 51. Р. 19. https://doi.org/10.1016/j.wasman.2016.03.005
  3. Abu-Saleem M., Zhuge Y., Hassanli R., Ellis M., Rahman M.M., Levett P. // Case Stud. Constr. Mater. 2021. V. 15. Р. e00728. https://doi.org/10.1016/j.cscm.2021.e00728
  4. Cheon H., Ruziev J., Lee H., Kang Y., Roh S., Kim W. // Appl. Sci. 2021. V. 11. Р. 11982. https://doi.org/ 10.3390/app112411982
  5. Ponomarev A.V. // High Energy Chem. 2020. V. 54. Р. 194. https://doi.org/10.1134/S0018143920030121
  6. Ponomarev A.V., Gohs U., Ratnam C., Horak C. // Radiat. Phys. Chem. 2022. V. 201. Р. 110397. https://doi.org/10.1016/j.radphyschem.2022.110397
  7. Lee H., Cheon H., Kang Y., Roh S., Kim W. // Appl. Sci. 2021. V. 11. Р. 10340. https://doi.org/10.3390/app112110340
  8. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. New York: Wiley, 1994.
  9. Khusyainova D.N., Shapagin A.V., Ponomarev A.V. // Radiat. Phys. Chem. 2022. V. 192. Р. 109918. https://doi.org/10.1016/j.radphyschem.2021.109918
  10. Bludenko A.V., Ponomarev A.V., Kholodkova E.M., Khusyainova D.N., Shapagin A.V. // High Energy Chem. 2022. V. 56. Р. 258. https://doi.org/10.1134/S0018143922040130
  11. Vcherashnyaya A.S., Mikhailova M.V., Shapagin A.V., Poteryaev A.A., Stepanenko V.Y., Ponomarev A.V. // High Energy Chem. 2021. V. 55. Р. 295. https://doi.org/10.1134/S0018143921040159
  12. Kholodkova E.M., Shapagin A.V., Ponomarev A.V. // High Energy Chem. 2022. V. 56. Р. 383. https://doi.org/10.1134/S001814392205006X
  13. Shirley D.A. // Phys. Rev. B. 1972. V. 5. Р. 4709. https://doi.org/10.1103/PhysRevB.5.4709
  14. Scofield J.H. // J. Electron Spectros. Relat. Phenomena. 1976. V. 8. Р. 129. https://doi.org/10.1016/0368-2048(76)80015-1
  15. Zaikov G.E., Rakovsky S.K. // Ozonation of Organic and Polymer Compounds. Smithers Rapra Technology, 2009.
  16. Orzechowska G.E., Nguyen H.T., Paulson S.E. // J. Phys. Chem. A. 2005. V. 109. Р. 5366. https://doi.org/ 10.1021/jp050167k
  17. Bertron A., Duchesne J., Escadeillas G. // Cem. Concr. Res. 2005. V. 35. Р. 155. https://doi.org/10.1016/j.cemconres.2004.09.009
  18. Oueslati O., Duchesne J. // Cem. Concr. Compos. 2014. V. 45. Р. 89. https://doi.org/10.1016/j.cemconcomp. 2013.09.007
  19. Paine K.A. Elsevier. 2019. Р. 285–339. https://doi.org/10.1016/B978-0-08-100773-0.00007-1
  20. Marchon D., Flat R.J. // Mechanisms of cement hydration, in: Science and Technology of Concrete Admixtures. Elsevier. 2016. Р. 129. https://doi.org/10.1016/B978-0-08-100693-1.00008-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Compressive strength s for CPPK as a function of [P] content and processing mode of HDPE powder. Similar dependences are observed for PP, PS and PET powders.

下载 (147KB)
3. Fig. 2. Compressive strength  for CPPK as a function of [p] content and treatment mode of LDPE powder. Similar dependencies are observed in the case of PVC and PC powders.

下载 (145KB)
4. Scheme

下载 (74KB)
5. Fig. 3. G yields of carboxyl group formation and total yields of oxygen-containing groups on the surface of the films.

下载 (138KB)
6. Fig. 4. IR spectra of PS and HDPE before (powders) and after (films) radiolytic oxidation.

下载 (282KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##