Radiolytic modification of polymer filler for cement compositions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of preliminary irradiation (3 MeV electron beam) of powdered (≤0.2 mm) synthetic polymers (polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polyethylene terephthalate, or polystyrene) on the compressive strength of cement-sand-polymer compositions has been studied. The surface oxidation of the powders was ensured by irradiation in air or in a water-air mixture. It is shown that the oxidation of the powder in an aqueous medium, as well as the post-radiation alkalization of the powders, contribute to a higher strength of the composites. Oxidation of the powder in air leads to a relative decrease in the strength of the composite due to a higher yield of acid formation.

Full Text

Restricted Access

About the authors

E. M. Kholodkova

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Leninsky prospekt 31(4), Moscow, 119071

Yu. M. Nevolin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Leninsky prospekt 31(4), Moscow, 119071

A. V. Shapagin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Leninsky prospekt 31(4), Moscow, 119071 Russia

Email: ponomarev@ipc.rssi.ru
Russian Federation, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences Leninsky prospekt 31(4), Moscow, 119071

O. Yu. Grafov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Leninsky prospekt 31(4), Moscow, 119071

A. V. Ponomarev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: ponomarev@ipc.rssi.ru
Russian Federation, Leninsky prospekt 31(4), Moscow, 119071

References

  1. Sandanayake M., Bouras Y., Haigh R., Vrcelj Z. // Sustainability, 2020, V. 12. P. 9622. https://doi.org/10.3390/su12229622
  2. Gu L., Ozbakkaloglu T. // Waste Manag. 2016. V. 51. Р. 19. https://doi.org/10.1016/j.wasman.2016.03.005
  3. Abu-Saleem M., Zhuge Y., Hassanli R., Ellis M., Rahman M.M., Levett P. // Case Stud. Constr. Mater. 2021. V. 15. Р. e00728. https://doi.org/10.1016/j.cscm.2021.e00728
  4. Cheon H., Ruziev J., Lee H., Kang Y., Roh S., Kim W. // Appl. Sci. 2021. V. 11. Р. 11982. https://doi.org/ 10.3390/app112411982
  5. Ponomarev A.V. // High Energy Chem. 2020. V. 54. Р. 194. https://doi.org/10.1134/S0018143920030121
  6. Ponomarev A.V., Gohs U., Ratnam C., Horak C. // Radiat. Phys. Chem. 2022. V. 201. Р. 110397. https://doi.org/10.1016/j.radphyschem.2022.110397
  7. Lee H., Cheon H., Kang Y., Roh S., Kim W. // Appl. Sci. 2021. V. 11. Р. 10340. https://doi.org/10.3390/app112110340
  8. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. New York: Wiley, 1994.
  9. Khusyainova D.N., Shapagin A.V., Ponomarev A.V. // Radiat. Phys. Chem. 2022. V. 192. Р. 109918. https://doi.org/10.1016/j.radphyschem.2021.109918
  10. Bludenko A.V., Ponomarev A.V., Kholodkova E.M., Khusyainova D.N., Shapagin A.V. // High Energy Chem. 2022. V. 56. Р. 258. https://doi.org/10.1134/S0018143922040130
  11. Vcherashnyaya A.S., Mikhailova M.V., Shapagin A.V., Poteryaev A.A., Stepanenko V.Y., Ponomarev A.V. // High Energy Chem. 2021. V. 55. Р. 295. https://doi.org/10.1134/S0018143921040159
  12. Kholodkova E.M., Shapagin A.V., Ponomarev A.V. // High Energy Chem. 2022. V. 56. Р. 383. https://doi.org/10.1134/S001814392205006X
  13. Shirley D.A. // Phys. Rev. B. 1972. V. 5. Р. 4709. https://doi.org/10.1103/PhysRevB.5.4709
  14. Scofield J.H. // J. Electron Spectros. Relat. Phenomena. 1976. V. 8. Р. 129. https://doi.org/10.1016/0368-2048(76)80015-1
  15. Zaikov G.E., Rakovsky S.K. // Ozonation of Organic and Polymer Compounds. Smithers Rapra Technology, 2009.
  16. Orzechowska G.E., Nguyen H.T., Paulson S.E. // J. Phys. Chem. A. 2005. V. 109. Р. 5366. https://doi.org/ 10.1021/jp050167k
  17. Bertron A., Duchesne J., Escadeillas G. // Cem. Concr. Res. 2005. V. 35. Р. 155. https://doi.org/10.1016/j.cemconres.2004.09.009
  18. Oueslati O., Duchesne J. // Cem. Concr. Compos. 2014. V. 45. Р. 89. https://doi.org/10.1016/j.cemconcomp. 2013.09.007
  19. Paine K.A. Elsevier. 2019. Р. 285–339. https://doi.org/10.1016/B978-0-08-100773-0.00007-1
  20. Marchon D., Flat R.J. // Mechanisms of cement hydration, in: Science and Technology of Concrete Admixtures. Elsevier. 2016. Р. 129. https://doi.org/10.1016/B978-0-08-100693-1.00008-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Compressive strength s for CPPK as a function of [P] content and processing mode of HDPE powder. Similar dependences are observed for PP, PS and PET powders.

Download (147KB)
3. Fig. 2. Compressive strength  for CPPK as a function of [p] content and treatment mode of LDPE powder. Similar dependencies are observed in the case of PVC and PC powders.

Download (145KB)
4. Scheme

Download (74KB)
5. Fig. 3. G yields of carboxyl group formation and total yields of oxygen-containing groups on the surface of the films.

Download (138KB)
6. Fig. 4. IR spectra of PS and HDPE before (powders) and after (films) radiolytic oxidation.

Download (282KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies