Influence of Ionization and Spin Transitions on Electron Delocalization in the Molecules of Transition Metal Sandwich Complexes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A quantum-chemical study of the structures of symmetric 3d metal sandwich complexes with benzene and cyclopentadienyl ligands has been carried out within the framework of the electron density of delocalized bonds (EDDB) model. Neutral and ionized molecules in various spin states were considered. It is shown that successive population of the d-electron shell by varying the metal atom in a series of similar complexes, as a rule, leads to a decrease in the degree of electron density delocalization. The detachment of an electron from neutral molecules also reduces the number of delocalized electrons in the sandwich system, but
the contribution of the metal atom to delocalization increases in most cases. Singlet-triplet transitions in metallocenes and bis-benzene complexes decrease the electron density of delocalized bonds, but to a lesser extent than in the free and C6H6 ligands.

Sobre autores

S. Ketkov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sketkov@iomc.ras.ru
Nizhny Novgorod, 603950 Russia

E. Rychagova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sketkov@iomc.ras.ru
Nizhny Novgorod, 603950 Russia

Bibliografia

  1. Wilkinson G., Rosenblum M., Whiting M.C., Woodward R.B. // J. Am. Chem. Soc. 1952. V. 74. P. 2125.
  2. Fischer E.O., Pfab W. // Z. Naturforsch. 1952. V. 7. P. 377.
  3. Comprehensive Organometallic Chemistry II: a Review of the Literature 1982–1994 / Eds. Abel E.W., Stone F.G.A., Wilkinson G. Oxford, N.Y.: Pergamon, 1995. Vols. 5–9.
  4. Laszlo P., Hoffmann R. // Angew. Chem. Int. Ed. 2000. V. 39. P. 123.
  5. Bochman M. // Organometallics and Catalysis: An Introduction. Oxford: Oxford University Press. 2015, 432 p.
  6. Plachida P., Evans D.R., Solanki R. / In: Nanoelectronic Device Applications Handbook. Eds. Morris J. E., Iniewski K. Boca Raton: CRC Press, 2013, pp. 409–420.
  7. Ihara T. / In: Advances in Bioorganometallic Chemistry. Eds. Hirao T., Moriuchi T. Elsevier, Amsterdam, 2019. Chapter 14. pp. 277–303.
  8. Scottwell S.O., Barnsley J.E., McAdam C.J., Gordon K.C., Crowley J.D. // Chem. Commun. 2017. V. 53. P. 7628.
  9. Woodward R.B., Rosenblum M., Whiting M.C. // J. Am. Chem. Soc. 1952. V. 74. P. 3458.
  10. Clack D.W., Warren K.D. // Struct. Bond. 1980. V. 39. P. 1.
  11. Elschenbroich C. Organometallics. 3rd edn. Wiley-VCH, Weinheim, 2006. Chapter 15, pp. 528–549.
  12. Aromaticity: Modern Computational Methods and Applications / Ed. Fernandez I. Elsevier Science, 2021. 499 p.
  13. Bean D.E., Fowler P.W., Morris M.J. // J. Organomet. Chem. 2011. V. 696. P. 2093.
  14. Grocka I., Latos-Grazynski L., Stepien M. // Angew. Chem. Int. Ed. 2013. V. 52. P. 1044.
  15. Valiev R.R., Kurten T., Valiulina L.I., Ketkov S.Y., Cherepanov V.N., Dimitrova M., Sundholm D. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 1666.
  16. Szczepanik D.W., Zak E.J., Dyduch K., Mrozek J. // Chem. Phys. Lett. 2014. V. 593. P. 154.
  17. Szczepanik D.W., Andrzejak M., Dominikowska J., Pawelek B., Krygowski T.M., Szatylowicz H., Sola M. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 28970.
  18. Green J.C. // Struct. Bond. 2019. V. 181. P. 81.
  19. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
  20. Frisch M.J. et al. GAUSSIAN 09 (Revision D.01), Gaussian Inc., Wallingford CT. 2010.
  21. Ketkov S.Y., Selzle H.L. // Angew. Chem. Int. Ed. 2012. V. 51. P. 11527.
  22. Ketkov S. // Dalton Trans. 2020. V. 49. P. 569.
  23. Ketkov S.Y., Rychagova E.A., Zhigulin G.Y., Tzeng S.Y., Tzeng W.B. // High Energ. Chem. 2020. V. 54. P. 414.
  24. Ketkov S.Y., Tzeng S.Y., Rychagova E.A., Markin G.V., Makarov S.G., Tzeng W.B. // Dalton Trans. 2021. V. 50. P. 10729.
  25. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
  26. Sun Y., Chen H. // J. Chem. Theory Comput. 2013. V. 9. P. 4735.
  27. Szczepanik D.W. RunEDDB. Available at: http://www.eddb.pl
  28. Rasmussen S.C. // ChemTexts. 2015. V. 1. № 1. Article 10.
  29. Layfield R.A. // Chem. Soc. Rev. 2008. V. 37. P. 1098.
  30. Baird N.C. // J. Am. Chem. Soc. 1972. V. 94. P. 4941.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (64KB)
3.

Baixar (79KB)
4.

Baixar (705KB)
5.

Baixar (696KB)
6.

Baixar (916KB)
7.

Baixar (443KB)

Declaração de direitos autorais © С.Ю. Кетков, Е.А. Рычагова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies