Peculiarities in the Radiolysis of β-Diketones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Intramolecular hydrogen bonding has a significant effect on the radiolytic transformations of β- diketones. Using the radiolysis of acetylacetone as an example, it has been shown that a hydrogen bond between the hydroxyl and carbonyl in an enol prevents proton transfer from the primary radical cation to the neighboring molecule. As a result, the radiolytic formation of a keto alcohol (4-hydroxy-2-pentanone) was not observed at room temperature, but it was effective under boiling conditions. The intramolecular hydrogen
bond contributed to a significant structural stress in the radical cation, which increased the yield of C–OH bond cleavage and the inhomogeneous formation of acetate (4-oxopent-2-en-2-yl acetate) under normal conditions

About the authors

S. I. Vlasov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

A. A. Smirnova

Faculty of Chemistry, Moscow State University

Email: ponomarev@ipc.rssi.ru
Moscow, 119991 Russia

A. V. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

D. A. Uchkina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

A. Yu. Sholokhova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

A. A. Mitrofanov

Faculty of Chemistry, Moscow State University

Author for correspondence.
Email: ponomarev@ipc.rssi.ru
Moscow, 119991 Russia

References

  1. Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2021. V. 55(5). P. 393.
  2. Ponomarev A.V., Vlasov S.I., Kholodkova E.M. // High Energy Chem. 2019. V. 53(4). P. 314.
  3. Belova N.V., Oberhammer H., Trang N.H., Girichev G.V. // J. Org. Chem. 2014. V. 79. P. 5412.
  4. Morell C., Grand A., Toro-Labbé A. // J. Phys. Chem. A. 2005. V. 109. P. 205
  5. Fukui K. // Science. 1982. V. 218(4574). P. 747.
  6. Smirnova A., Mitrofanov A., Matveev P., Baygildiev T., Petrov V. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 14992.
  7. Matveev P.I., Mitrofanov A.A., Petrov V.G., Zhokhov S.S., Smirnova A.A., Ustynyuk Y.A., Kalmykova S.N. // RSC Adv. 2017. V. 7. P. 55441.
  8. Curran H.J. // Int. J. Chem. Kinet. 2006. V. 38. P. 250.
  9. Huynh L.K., Violi A. // J. Org. Chem. 2008. V. 73. P. 94.
  10. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. Wiley. N.Y. 1994.
  11. Hush N., Livett M., Peel J., Willett G. // Aust. J. Chem. 1987. V. 40. P. 599.
  12. Messaadia L., El Dib G., Ferhati A., Chakir A. // Chem. Phys. Lett. 2015. V. 626. P. 73.
  13. Ji Y., Qin D., Zheng J., Shi Q., Wang J., Lin Q., Chen J., Gao Y., Li G., An T. // Sci. Total Environ. 2020. V. 720. P. 137610.
  14. Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2018. V. 52(4). P. 312.
  15. Ponomarev A.V., Ratner A.M., Pikaev A.K. // High Energy Chem. 1995. V. 29(2). P. 91.
  16. Howard D.L., Kjaergaard H.G., Huang J., Meuwly M. // J. Phys. Chem. A. 2015. V. 119. P. 7980.
  17. Antonov I., Voronova K., Chen M.-W., Sztáray B., Hemberger P., Bodi A., Osborn D.L., Sheps L. // J. Phys. Chem. A. 2019. V. 123. P. 5472.
  18. Guo J.-J., Hu A., Zuo Z. // Tetrahedron Lett. 2018. V. 59. P. 2103.
  19. Dibble T.S., Chai J. // Advances in Atmospheric Chemistry. World Scientific, 2017. P. 185.

Supplementary files


Copyright (c) 2023 С.И. Власов, А.А. Смирнова, А.В. Пономарев, Д.А. Учкина, А.Ю. Шолохова, А.А. Митрофанов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies