The Use of Machine Learning for Compiling a Catalog of Solar Flares Based on Observations of the Siberian Radioheliograph

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we present and discuss the results of using the machine learning methods to compile a catalog of solar flares observed with the Siberian Radioheliograph (SRH). The high sensitivity of the instrument, as well as the use of time profiles of the sum of correlation coefficients of antenna pairs (correlation plots) for event searching allowed us to include in the catalog the weak events, which are poorly distinguished in the time profiles of the emission flux. We proposed and tested a technique for selecting candidate events that allows the onset, maximum, and end of a solar flare to be determined by analyzing the derivative of the time profile given by a numerical function. Since the purpose of the catalog was to select wideband events, we introduced a criterion that allows automatic event selection based on simultaneous responses at several frequencies. Support Vector Machine (SVM) method was used in the test mode to assert the solar origin of the events and specify the quality of observational data. The volume of observational data obtained by the SRH in the second half of 2023 and in 2024 provides extensive material for both training and testing the model. The method was applied to the time profiles obtained in the 9–10 GHz band to divide them into “flare”, “background”, and “artifact”.

About the authors

Ju. N. Shamsutdinova

Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences

Irkutsk, Russia

D. V. Rozhkova

Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences

Irkutsk, Russia

L. K. Kashapova

Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences

Email: lkk@iszf.irk.ru
Irkutsk, Russia

A. V. Gubin

Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences

Irkutsk, Russia

References

  1. Алтынцев А.Т., Лесовой С.В., Глоба М.В. и др. Многоволновый Сибирский Радиогелиограф // Солнечно-земная физика. Т. 6. № 2. С. 37–50. 2020.
  2. Лесовой С.В., Кобец В.С. Корреляционные кривые Сибирского Радиогелиографа // Солнечно-земная физика. Т. 3. № 1. С. 17–21. 2017.
  3. Мотык И.Д., Кашапова Л.К., Рожкова Д.В. Средние временные профили микроволнового излучения солнечных вспышек: морфология и применение // Астрономический журнал. Т. 102. № 8. С. 728–742. 2025.
  4. Cortes C., Vapnik V. Support-Vector Networks // Machine Learning. V. 20. P. 273–297. 1995.
  5. Hao N., Flagg L., Jayawardhana R. Detecting and Classifying Flares in High-resolution Solar Spectra with Supervised Machine Learning // The Astrophysical Journal. V. 973. P. 7. 2024.
  6. Lysenko A.L., Ulanov M.V., Kuznetsov A.A. et al. KW-Sun: The Konus-Wind Solar Flare Database in Hard X-Ray and Soft Gamma-RayRanges // The Astrophysical Journal Supplement Series. V. 262. P. 32. 2022.
  7. Rifkin R., Klautau A. In Defense of One-Vs-All Classification // Journal of Machine Learning Research. V. 5. P. 101–141. 2004.
  8. Widodo A., Yang B.-S. Support vector machine in machine condition monitoring and fault diagnosis // Mechanical Systems and Signal Processing. V. 21. № 6. P. 2560–2574. 2007.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).