On External Drivers of Sudden Increases of Energetic Electrons in the Quasi-Trapped Zone During Superstorms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A sudden increase in the flux of quasi-trapped energetic electrons in the forbidden zone is known as the phenomenon of forbidden energetic electrons. The Energies characteristic of the enhanced electron fluxes are tens and hundreds of keV. The flux in the forbidden zone exceeds the background values of ~103 (cm2 s sr)–1 by several orders of magnitude and can reach 107 (sm2 s sr)–1 during powerful storms. The mechanism of increases in quasi-trapped electron fluxes is still not entirely clear. The probability of flux enhancements displays an ambiguous dependence on the level of geomagnetic activity. However, during extremely powerful magnetic storms with |Dst| ≥ 400 nT, this phenomenon is always observed. In this paper, we check the hypothesis of earthward fast transport of particles associated with the electrical drift. The flux enhancements during five superstorms in the period from 2000 to 2025 (March 31, 2001; October 29–31, 2003; November 20, 2003; November 7–10, 2004; and May 10–13, 2024) were selected for the analysis. The solar wind and interplanetary magnetic field parameters during superstorms were analyzed to determine the most probable external drivers of the ejection of electrons with energies of 30–300 keV. Strong increases of electron flux can be caused by sudden jumps (positive and/or negative) in the total plasma pressure, as well as by inhomogeneous magnetic structures with sharp boundaries (bends or rotations of the magnetic field vector, MHD discontinuities). The intervals of near-radial field can also be considered as suitable conditions for the flux enhancement events. The time of the electric drift and the electric field intensity required for a rapid particle transport into the quasi-trapped zone are estimated.

About the authors

V. V. Suvorova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (SINP MSU)

Email: alla_suvorova@mail.ru
Moscow, Russia

A. V. Dmitriev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (SINP MSU)

Moscow, Russia

References

  1. Дмитриев А.В., Суворова А.В. Пересечения дневной магнитопаузы во время бури 10 мая 2024: анализ условий в солнечном ветре / Двадцатая конференция “Физика плазмы в солнечной системе”. 10–14 февраля 2025 г., г. Москва. Сб. тез. докл. М.: ИКИ РАН. С. 204. 2025.
  2. Дэспирак И.В., Любчич А.А., Клейменова Н.Г. Суперсуббури и условия в солнечном ветре // Геомагнетизм и аэрономия. Т. 59. № 2. С. 183–190. 2019. https://doi.org/10.1134/S001679401902007X
  3. Лайонс Л., Уильямс Д. Физика магнитосферы. М.: Мир. 1987, 312 с.
  4. Мишин В.В., Пархомов В.А., Табанаков И.В., Хаяши К. О “включении” желобковой неустойчивости на магнитопаузе во время прохождения межпланетного магнитного облака 10–11 января 1997 г. // Геомагнетизм и аэрономия. Т. 41. № 2. С. 165–168. 2001.
  5. Савенко И.А., Шаврин П.И., Писаренко Н.Ф. Низкоэнергичные частицы на высоте 320 км на широтах вблизи экватора // Искусственные спутники Земли. Т. 13. C. 75–80. 1962.
  6. Суворова А.В., Дмитриев А.В. Условия появления интенсивных потоков энергичных электронов на L < 1.2, связанные с солнечной активностью и параметрами солнечного ветра // Солнечно-земная физика. Т. 10. № 3. С. 79–87. 2024. https://doi.org/10.12737/szf-103202409
  7. Тверской Б.А. Динамика радиационных поясов Земли. М.: Наука. 1968, 223 с.
  8. Asikainen T., Mursula K. Filling the South Atlantic anomaly by energetic electrons during a great magnetic storm // Geophys. Res. Lett. V. 32. № 16. ID L16102. 2005. https://doi.org/10.1029/2005GL023634
  9. Blake J.B., Inan U.S., Walt M., Bell T.F., Bortnik J., Chenette D.L., Christian H.J. Lightning-induced energetic electron flux enhancements in the drift loss cone // J. Geophys. Res. – Space. V. 106. № 12. P. 29733–29744. 2001. https://doi.org/10.1029/2001JA000067
  10. Burke W.J., Maynard N.C. Satellite observation of electric fields in the inner magnetosphere and their effects in the mid-to-low latitude ionosphere // IEEE T. Plasma Sci. V. 28. № 6. P. 1903–1911. 2000. https://doi.org/10.1109/27.902218
  11. Cladis J.B. Resonance acceleration of particles in the inner radiation belt / Radiation Trapped in the Earth’s Magnetic Field. Ed. B.M. McCormac. Dordrecht, Holland: D. Reidel Publishing Co. P. 112–115. 1966. https://doi.org/10.1007/978-94-010-3553-8_9
  12. Dmitriev A., Chao J.-K., Thomsen M., Suvorova A. Geosynchronous magnetopause crossings on October 29–31, 2003 // J. Geophys. Res. – Space. V. 110. № 8. ID A08209. 2005. https://doi.org/10.1029/2004JA010582
  13. Dmitriev A.V., Suvorova A.V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations // J. Geophys. Res. – Space. V. 117. № 8. ID A08217. 2012. https://doi.org/10.1029/2011JA016861
  14. Dmitriev A.V., Suvorova A.V. Atmospheric effects of magnetosheath jets // Atmosphere. V. 14. № 1. ID 45. 2023. https://doi.org/10.3390/atmos14010045
  15. Elvidge S., Themens D.R. The probability of the May 2024 geomagnetic superstorms // Space Weather. V. 23. № 1. ID e2024SW004113. 2025. https://doi.org/10.1029/2024SW004113
  16. Evans D.S. Dramatic increases in the flux of >30 keV electrons at very low L-values in the onset of large geomagnetic storms // Eos, Transactions AGU. V. 69. № 44. P. 1393. 1988.
  17. Evans D.S., Greer M.S. Polar Orbiting Environmental Satellite Space Environment Monitor – 2: Instrument descriptions and archive data documentation (available from NGDC: http://ngdc.noaa.gov/stp/satellite/poes/documentation.html). 2006.
  18. Grachev E.A., Grigoryan O.R., Klimov S.I., Kudela K., Petrov A.N., Schwingenschuh K., Sheveleva V.N., Stetiarova J. Altitude distribution analysis of electron fluxes at L~1.2–1.8 // Adv. Space Res. V. 36. № 10. P. 1992–1996. 2005. http://doi.org/10.1016/j.asr.2003.03.078
  19. Grigoryan O., Kudela K., Rothkaehl H., Sheveleva V. The electron formations under the radiation belts at L shell 1.2–1.9 // Adv. Space Res. V. 41. № 1. P. 81−85. 2008. http://doi.org/10.1016/j.asr.2006.11.008
  20. Fairfield D.H., Baumjohann W., Paschmann G., Lühr H., Sibeck D.G. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere // J. Geophys. Res. – Space. V. 78. № 4. P. 3731–3744. 1990. https//doi.org/10.1029/JA095iA04p03773
  21. Hayakawa H., Ebihara Y., Mishev A. et al. The solar and geomagnetic storms in 2024 May: A flash data report // Astrophys. J. V. 979. № 1. ID 49. 2025. https://doi.org/10.3847/1538-4357/ad9335
  22. Heikkila W.J. Soft particle fluxes near the equator // J. Geophys. Res. V. 76. № 4. P. 1076–1078. 1971. https://doi.org/10.1029/JA076i004p01076
  23. Hua M., Li W., Ma Q., Ni B., Nishimura Y., Shen X-C., Li H. Modeling the electron enhancement and butterfly pitch angle distributions on L shells <2.5 // Geophys. Res. Lett. V. 46. № 20. P. 10967–10976. 2019. https://doi.org/10.1029/2019GL084822
  24. Hui D., Vichare G. Variable responses of equatorial ionosphere during undershielding and overshielding conditions // J. Geophys. Res. – Space. V. 124. № 2. P. 1328–1342. 2019. https://doi.org/10.1029/2018JA025999
  25. Kikuchi T., Chum Y., Tomizawa I., Hashimoto K., Hosokawa K., Ebihara Y., Hozumi K., Supnithi P. Penetration of the electric fields of the geomagnetic sudden commencement over the globe as observed with the HF Doppler sounders and magnetometers // Earth Planets Space. V. 73. № 1. ID 10. 2021. https://doi.org/10.1186/s40623-020-01350-8
  26. Kim K.-H., Cattell C.A., Lee D.-H., Takahashi K., Yumoto K., Shiokawa K., Mozer F.S., Andre M. Magnetospheric responses to sudden and quasiperiodic solar wind variations // J. Geophys. Res. – Space. V. 107. № 11. ID 1406. 2002. https://doi.org/10.1029/2002JA009342
  27. Krasovskii V.I., Kushner Yu.M., Bordovskii G.A., Zakharov G.F., Svetlitskii E.M. The observation of corpuscles by means of the third artificial earth satellite // Planet. Space Sci. V. 5. № 3. P. 248–249. 1961. https://doi.org/10.1016/0032-0633(61)90189-1
  28. Kozelova T.V., Lazutin L.L., Kozelov B.V. Energetic particle bursts before the main substorm injection // Adv. Space Res. V. 30. № 7. P. 1805−1808. 2002. https://doi.org/10.1016/S0273-1177(02)00453-2
  29. Kudela K., Matisin J., Shuiskaya F.K., Akentieva O.S., Romatsova T.V., Venkatesan D. Inner zone electron peaks observed by the “Active” satellite // J. Geophys. Res. – Space. V. 97. № 6. P. 8681−8683. 1992. https://doi.org/10.1029/92JA00100
  30. Laakso H., Schmidt R. Pc4–5 pulsations in the electric field at geostationary orbit (GEOS 2) triggered by sudden storm commencements // J. Geophys. Res. – Space. V. 94. № 6. P. 6626–6632. 1989. https//doi.org/10.1029/JA094iA06p06626
  31. Lakhina G.S., Tsurutani B.T. Geomagnetic storms: hystorical perspective to modern view // Geoscience Letters. V. 3. ID 5. 2016. https://doi.org/10.1186/s40562-016-0037-4
  32. Lejosne S., Mozer F.S. Typical values of the electric drift E × B/B2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements // J. Geophys. Res. – Space. V. 121. № 12. P. 12014–12024. 2016. https://doi.org/10.1002/2016JA023613
  33. Li H., Wang C., Kan J.R. Midday magnetopause shifts earthward of geosynchronous orbit during geomagnetic superstorms with Dst ≤ −300 nT // J. Geophys. Res. – Space. V. 115. № 8. ID A08230. 2010. https://doi.org/10.1029.2009JA014612
  34. Marchuk R.A., Mishin V.V., Penskikh Yu.V., Klibanova Yu.Yu., Mikhalev A.V. Geomagnetic disturbances and midlatitude airglow during the 20 December 2015 magnetospheric storm // J. Geophys. Res. – Space. V. 130. № 6. ID e2025JA033979. 2025. https://doi.org/10.1029/2025JA033979
  35. Mishin V.V. Accelerated motions of the magnetopause as a trigger of the Kelvin-Helmholtz instability // J. Geophys. Res. – Space. V. 98. № 12. P. 21365−21371. 1993. https://doi.org/10.1029/93JA00417
  36. Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Storm-time electric field distribution in the inner magnetosphere // Geophys. Res. Lett. V. 33. № 22. ID L22102. 2006. https://doi.org/10.1029/2006GL027510
  37. Paulikas G.A. Precipitation of particles at low and middle latitudes // Rev. Geophys. V. 13. № 5. P. 709−734. 1975. https//doi.org/10.1029/RG013i005p00709
  38. Parkhomov V.A., Mishin V.V., Borovik L.V. Long-period geomagnetic pulsations cased by the solar wind negative pressure impulse on 22 March 1979 (CDAW-6) // Ann. Geophys. V. 16. № 2. P. 134−139. 1998. https://doi.org/10.1007/s00585-998-0134-6
  39. Pfaff R., Rowland D., Freudenreich H. et al. Observations of DC electric fields in the low-latitude ionosphere and their variations with local time, longitude, and plasma density during extreme solar minimum // J. Geophys. Res. – Space. V. 115. № 12. ID A12324. 2010. https://doi.org/10.1029/2010JA016023
  40. Pfaff R., Uribe P., Fourre R. et al. The vector electric field investigation (VEFI) on the C/NOFS satellite. Space Sci. Rev. V. 217. № 8. ID 85. 2021. https://doi.org/10.1007/s11214-021-00859-y
  41. Pinto O.Jr., Pinto R.C.A., Gonzalez W.D., Gonzalez A.L.C. About the origin of peaks in the spectrum of inner belt electrons // J. Geophys. Res. – Space. V. 96. № 2. P. 1857−1860. 1991. https://doi.org/10.1029/90JA02383
  42. Rodger C.J., Clilverd M.A., McCormick R.J. Significance of lightning-generated whistlers to inner radiation belt electron lifetimes // J. Geophys. Res. – Space. V. 108. № 12. ID 1462. 2003. https://doi.org/10.1029/2003JA009906
  43. Rowland D.E., Wygant J.R. Dependence of the largescale, inner magnetospheric electric field on geomagnetic activity // J. Geophys. Res. – Space. V. 103. № 7. P. 14959−14964. 1998. https://doi.org/10.1029/97JA03524
  44. Sauvaud J.A., Moreau T., Maggiolo R., Treilhou J.-P., Jacquey C., Cros A., Coutelier J., Rouzaud J., Penou E., Gangloff M. High-energy electron detection onboard DEMETER: The IDP spectrometer description and first results on the inner belt // Planet. Space Sci. V. 54. № 5. P. 502−511. 2006. https://doi.org/10.1016/j.pss.2005.10.019
  45. Selesnick R.S., Su Y.-J., Blake J.B. Control of the innermost electron radiation belt by large-scale electric fields // J. Geophys. Res. – Space. V. 121. № 9. P. 8417–8427. 2016. https://doi.org/10.1002/2016JA022973
  46. Selesnick R.S., Su Y.-J., Sauvaud J.A. Energetic electrons below the inner radiation belt // J. Geophys. Res. – Space. V. 124. № 7. P. 5421–5440. 2019. https://doi.org/10.1029/2019JA026718
  47. Shinbori A., Nishimura Y., Ono T., Iizima M., Kumamoto A., Oya H. Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989 // Earth Planets Space. V. 57. № 7. P. 643−659. 2005. https://doi.org./10.1186/BF03351843
  48. Shinbori A., Ono T., Iizima M., Kumamoto A., Nishimura Y. Enhancements of magnetospheric convection electric field associated with sudden commencements in the inner magnetosphere and plasmasphere regions // Adv. Space Res. V. 38. № 8. P. 1595–1607. 2006. https://doi.org/10.1016/j.asr.2005.05.082
  49. Shinbori A., Ono T., Iizima M., Kumamoto A. et al. SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere // Earth Planets Space. V. 56. № 2. P. 269−282. 2004. https://doi.org./10.1186/BF03353409
  50. Su Y.-J., Selesnick R.S., Blake J.B. Formation of the inner electron radiation belt by enhanced large-scale electric fields // J. Geophys. Res. – Space. V. 121. № 9. P. 8508–8522. 2016. https://doi.org/10.1002/2016JA022881
  51. Suvorova A., Dmitriev A., Chao J.-K., Thomsen M., Yang Y.-H. Necessary conditions for geosynchronous magnetopause crossings // J. Geophys. Res. – Space. V. 110. № 1. ID A01206. 2005. https://doi.org/10.1029/2003JA010079
  52. Suvorova A.V., Tsai L.C., Dmitriev A.V. On relation between mid-latitude ionospheric ionization and quasi-trapped energetic electrons during 15 December 2006 magnetic storm // Planet. Space Sci. V. 60. № 3. P. 363−369. 2012. https://doi.org/10.1016/j.pss.2011.11.001
  53. Suvorova A.V., Dmitriev A.V., Tsai L.-C., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Lazutin L.L. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere // J. Geophys. Res. – Space. V. 118. № 7. P. 4672–4695. 2013. https://doi.org/10.1002/jgra.50439
  54. Suvorova A.V., Huang C.-M., Matsumoto H., Dmitriev A.V., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Tsai L.-C. Low-latitude ionospheric effects of energetic electrons during a recurrent magnetic storm // J. Geophys. Res. – Space. V. 119. № 11. P. 9283−9302. 2014. https://doi.org/10.1002/2014JA020349
  55. Suvorova A.V., Dmitriev A.V. Radiation aspects of geomagnetic storm impact below the radiation belt / Cyclonic and Geo-magnetic Storms: Predicting Factors, Formation and Environmental Impacts. Ed. V.P. Banks. New York, USA: NOVA Science Publishers. P. 19−76. 2015.
  56. Suvorova A.V., Dmitriev A.V. On magnetopause inflation under radial IMF // Adv. Space Res. V. 58. № 2. P. 249−256. 2016. https://doi.org/10.1016/j.asr.2015.07.044
  57. Suvorova A.V. Flux enhancements of >30 keV electrons at low drift shells L <1.2 during last solar cycles // J. Geophys Res. – Space. V. 122. № 12. P. 12274−12287. 2017. https://doi.org/10.1002/2017JA024556
  58. Suvorova A.V., Dmitriev A.V., Parkhomov V.A. Energetic electron enhancements under the radiation belt (L < 1.2) during a non-storm interval on 1 August 2008 // Ann. Geophys. V. 37. № 6. P. 1223−1241. 2019. https://doi.org/10.5194/angeo-37-1223-2019
  59. Suvorova A.V. Solar-cycle variations of forbidden energetic electrons enhancements // Universe. V. 9. № 8. ID 374. 2023. https://doi.org/10.3390/universe9080374
  60. Tsurutani B.T., Hajra R., Echer E., Gjerloev J.W. Extremely intense (SML ≤ −2500 nT) substorms: isolated events that are externally triggered? // Ann. Geophys. V. 33. № 5. P. 519−524. 2015. https://doi.org/10.5194/angeocom-33-519-2015
  61. Tsurutani B.T., Kamide Y., Arballo J.K., Gonzalez W.D., Lepping R.P. Inerplanetary causes of great and superintense magnetic storms // Phys. Chem. Earth Pt C. V. 24. № 1−3. P. 101−105. 1999. https://doi.org/10.1016/S1464-1917(98)00015-4
  62. Wygant Y., Mozer F., Temerin M., Blake J., Maynard N., Singer H., Smiddy M. Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes // Geophys. Res. Lett. V. 21. № 16. P. 1739−1742. 1994. hhtps://doi.org/10.1029/94GL00375
  63. Zong Q.-G., Yue C., Fu S.-Y. Shock induced strong substorms and super substorms: preconditions and associated oxygen ion dynamics // Space Sci. Rev. V. 217. № 3. ID 33. 2021. https://doi.org/10.1007/s11214-021-00806-x
  64. Goddard Space Flight Center. 25.06.2025. https://cdaweb.gsfc.nasa.gov/
  65. National Centers for Environmental Information. 25.06.2025. https://www.ncei.noaa.gov/products/poesmetop-space-environment-monitor
  66. World Data Center for Geomagnetism, Kyoto. 25.06.2025. https://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).