О ВНЕШНИХ ДРАЙВЕРАХ ВНЕЗАПНОГО ВОЗРАСТАНИЯ ЭНЕРГИЧНЫХ ЭЛЕКТРОНОВ В ЗАПРЕЩЕННОЙ ЗОНЕ ВО ВРЕМЯ СУПЕРБУРЬ
- Авторы: Суворова А.В.1, Дмитриев А.В.1
-
Учреждения:
- Научно-исследовательский институт им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова (НИИЯФ МГУ)
- Выпуск: Том 65, № 6 (2025)
- Страницы: 815–840
- Раздел: Статьи
- URL: https://journals.rcsi.science/0016-7940/article/view/375961
- DOI: https://doi.org/10.7868/S3034502225060068
- ID: 375961
Цитировать
Аннотация
Внезапное возрастание потоков квазизахваченных энергичных электронов в запрещенной зоне известно как явление forbidden energetic electrons. Энергии электронов, характерные для интенсивных потоков, составляют десятки и сотни кэВ. Поток электронов в запрещенной зоне превышает фоновые значения ~103 (см2 с ср)–1 на несколько порядков и во время мощных бурь может достигать 107 (см2 с ср)–1. Механизм, который приводит к возрастаниям потоков квазизахваченных электронов, до сих пор до конца не ясен. Вероятность наблюдения возрастаний неоднозначно зависит от уровня геомагнитной активности. Однако во время экстремально мощных магнитных бурь с |Dst| ≥ 400 нТл это явление наблюдается всегда. В данной работе мы проверяем гипотезу о быстром переносе частиц к Земле, связанном с электрическим дрейфом. Для анализа были выбраны события во время пяти супербурь в период с 2000 по 2025 гг. (31 марта 2001, 29—31 октября 2003, 20 ноября 2003, 7—10 ноября 2004 и 10—13 мая 2024). Анализ параметров солнечного ветра и межпланетного магнитного поля во время супербурь позволил определить наиболее вероятные внешние драйверы запуска механизма инжекции квазизахваченных электронов с энергиями 30—300 кэВ. Драйверами внезапных возрастаний потоков квазизахваченных электронов могут служить резкие скачки (положительные и/или отрицательные) полного давления плазмы, а также неоднородные магнитные структуры с резкими границами (повороты или вращения поля, МГД–разрывы). Интервалы почти радиального поля также могут рассматриваться как подходящие условия для этих событий. Получены оценки времени электрического дрейфа и напряженности электрического поля, которые необходимы для быстрого транспорта частиц в зону квазизахвата.
Об авторах
А. В. Суворова
Научно-исследовательский институт им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова (НИИЯФ МГУ)
Email: alla_suvorova@mail.ru
Москва, Россия
А. В. Дмитриев
Научно-исследовательский институт им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова (НИИЯФ МГУ)Москва, Россия
Список литературы
- Дмитриев А.В., Суворова А.В. Пересечения дневной магнитопаузы во время бури 10 мая 2024: анализ условий в солнечном ветре / Двадцатая конференция “Физика плазмы в солнечной системе”. 10–14 февраля 2025 г., г. Москва. Сб. тез. докл. М.: ИКИ РАН. С. 204. 2025.
- Дэспирак И.В., Любчич А.А., Клейменова Н.Г. Суперсуббури и условия в солнечном ветре // Геомагнетизм и аэрономия. Т. 59. № 2. С. 183–190. 2019. https://doi.org/10.1134/S001679401902007X
- Лайонс Л., Уильямс Д. Физика магнитосферы. М.: Мир. 1987, 312 с.
- Мишин В.В., Пархомов В.А., Табанаков И.В., Хаяши К. О “включении” желобковой неустойчивости на магнитопаузе во время прохождения межпланетного магнитного облака 10–11 января 1997 г. // Геомагнетизм и аэрономия. Т. 41. № 2. С. 165–168. 2001.
- Савенко И.А., Шаврин П.И., Писаренко Н.Ф. Низкоэнергичные частицы на высоте 320 км на широтах вблизи экватора // Искусственные спутники Земли. Т. 13. C. 75–80. 1962.
- Суворова А.В., Дмитриев А.В. Условия появления интенсивных потоков энергичных электронов на L < 1.2, связанные с солнечной активностью и параметрами солнечного ветра // Солнечно-земная физика. Т. 10. № 3. С. 79–87. 2024. https://doi.org/10.12737/szf-103202409
- Тверской Б.А. Динамика радиационных поясов Земли. М.: Наука. 1968, 223 с.
- Asikainen T., Mursula K. Filling the South Atlantic anomaly by energetic electrons during a great magnetic storm // Geophys. Res. Lett. V. 32. № 16. ID L16102. 2005. https://doi.org/10.1029/2005GL023634
- Blake J.B., Inan U.S., Walt M., Bell T.F., Bortnik J., Chenette D.L., Christian H.J. Lightning-induced energetic electron flux enhancements in the drift loss cone // J. Geophys. Res. – Space. V. 106. № 12. P. 29733–29744. 2001. https://doi.org/10.1029/2001JA000067
- Burke W.J., Maynard N.C. Satellite observation of electric fields in the inner magnetosphere and their effects in the mid-to-low latitude ionosphere // IEEE T. Plasma Sci. V. 28. № 6. P. 1903–1911. 2000. https://doi.org/10.1109/27.902218
- Cladis J.B. Resonance acceleration of particles in the inner radiation belt / Radiation Trapped in the Earth’s Magnetic Field. Ed. B.M. McCormac. Dordrecht, Holland: D. Reidel Publishing Co. P. 112–115. 1966. https://doi.org/10.1007/978-94-010-3553-8_9
- Dmitriev A., Chao J.-K., Thomsen M., Suvorova A. Geosynchronous magnetopause crossings on October 29–31, 2003 // J. Geophys. Res. – Space. V. 110. № 8. ID A08209. 2005. https://doi.org/10.1029/2004JA010582
- Dmitriev A.V., Suvorova A.V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations // J. Geophys. Res. – Space. V. 117. № 8. ID A08217. 2012. https://doi.org/10.1029/2011JA016861
- Dmitriev A.V., Suvorova A.V. Atmospheric effects of magnetosheath jets // Atmosphere. V. 14. № 1. ID 45. 2023. https://doi.org/10.3390/atmos14010045
- Elvidge S., Themens D.R. The probability of the May 2024 geomagnetic superstorms // Space Weather. V. 23. № 1. ID e2024SW004113. 2025. https://doi.org/10.1029/2024SW004113
- Evans D.S. Dramatic increases in the flux of >30 keV electrons at very low L-values in the onset of large geomagnetic storms // Eos, Transactions AGU. V. 69. № 44. P. 1393. 1988.
- Evans D.S., Greer M.S. Polar Orbiting Environmental Satellite Space Environment Monitor – 2: Instrument descriptions and archive data documentation (available from NGDC: http://ngdc.noaa.gov/stp/satellite/poes/documentation.html). 2006.
- Grachev E.A., Grigoryan O.R., Klimov S.I., Kudela K., Petrov A.N., Schwingenschuh K., Sheveleva V.N., Stetiarova J. Altitude distribution analysis of electron fluxes at L~1.2–1.8 // Adv. Space Res. V. 36. № 10. P. 1992–1996. 2005. http://doi.org/10.1016/j.asr.2003.03.078
- Grigoryan O., Kudela K., Rothkaehl H., Sheveleva V. The electron formations under the radiation belts at L shell 1.2–1.9 // Adv. Space Res. V. 41. № 1. P. 81−85. 2008. http://doi.org/10.1016/j.asr.2006.11.008
- Fairfield D.H., Baumjohann W., Paschmann G., Lühr H., Sibeck D.G. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere // J. Geophys. Res. – Space. V. 78. № 4. P. 3731–3744. 1990. https//doi.org/10.1029/JA095iA04p03773
- Hayakawa H., Ebihara Y., Mishev A. et al. The solar and geomagnetic storms in 2024 May: A flash data report // Astrophys. J. V. 979. № 1. ID 49. 2025. https://doi.org/10.3847/1538-4357/ad9335
- Heikkila W.J. Soft particle fluxes near the equator // J. Geophys. Res. V. 76. № 4. P. 1076–1078. 1971. https://doi.org/10.1029/JA076i004p01076
- Hua M., Li W., Ma Q., Ni B., Nishimura Y., Shen X-C., Li H. Modeling the electron enhancement and butterfly pitch angle distributions on L shells <2.5 // Geophys. Res. Lett. V. 46. № 20. P. 10967–10976. 2019. https://doi.org/10.1029/2019GL084822
- Hui D., Vichare G. Variable responses of equatorial ionosphere during undershielding and overshielding conditions // J. Geophys. Res. – Space. V. 124. № 2. P. 1328–1342. 2019. https://doi.org/10.1029/2018JA025999
- Kikuchi T., Chum Y., Tomizawa I., Hashimoto K., Hosokawa K., Ebihara Y., Hozumi K., Supnithi P. Penetration of the electric fields of the geomagnetic sudden commencement over the globe as observed with the HF Doppler sounders and magnetometers // Earth Planets Space. V. 73. № 1. ID 10. 2021. https://doi.org/10.1186/s40623-020-01350-8
- Kim K.-H., Cattell C.A., Lee D.-H., Takahashi K., Yumoto K., Shiokawa K., Mozer F.S., Andre M. Magnetospheric responses to sudden and quasiperiodic solar wind variations // J. Geophys. Res. – Space. V. 107. № 11. ID 1406. 2002. https://doi.org/10.1029/2002JA009342
- Krasovskii V.I., Kushner Yu.M., Bordovskii G.A., Zakharov G.F., Svetlitskii E.M. The observation of corpuscles by means of the third artificial earth satellite // Planet. Space Sci. V. 5. № 3. P. 248–249. 1961. https://doi.org/10.1016/0032-0633(61)90189-1
- Kozelova T.V., Lazutin L.L., Kozelov B.V. Energetic particle bursts before the main substorm injection // Adv. Space Res. V. 30. № 7. P. 1805−1808. 2002. https://doi.org/10.1016/S0273-1177(02)00453-2
- Kudela K., Matisin J., Shuiskaya F.K., Akentieva O.S., Romatsova T.V., Venkatesan D. Inner zone electron peaks observed by the “Active” satellite // J. Geophys. Res. – Space. V. 97. № 6. P. 8681−8683. 1992. https://doi.org/10.1029/92JA00100
- Laakso H., Schmidt R. Pc4–5 pulsations in the electric field at geostationary orbit (GEOS 2) triggered by sudden storm commencements // J. Geophys. Res. – Space. V. 94. № 6. P. 6626–6632. 1989. https//doi.org/10.1029/JA094iA06p06626
- Lakhina G.S., Tsurutani B.T. Geomagnetic storms: hystorical perspective to modern view // Geoscience Letters. V. 3. ID 5. 2016. https://doi.org/10.1186/s40562-016-0037-4
- Lejosne S., Mozer F.S. Typical values of the electric drift E × B/B2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements // J. Geophys. Res. – Space. V. 121. № 12. P. 12014–12024. 2016. https://doi.org/10.1002/2016JA023613
- Li H., Wang C., Kan J.R. Midday magnetopause shifts earthward of geosynchronous orbit during geomagnetic superstorms with Dst ≤ −300 nT // J. Geophys. Res. – Space. V. 115. № 8. ID A08230. 2010. https://doi.org/10.1029.2009JA014612
- Marchuk R.A., Mishin V.V., Penskikh Yu.V., Klibanova Yu.Yu., Mikhalev A.V. Geomagnetic disturbances and midlatitude airglow during the 20 December 2015 magnetospheric storm // J. Geophys. Res. – Space. V. 130. № 6. ID e2025JA033979. 2025. https://doi.org/10.1029/2025JA033979
- Mishin V.V. Accelerated motions of the magnetopause as a trigger of the Kelvin-Helmholtz instability // J. Geophys. Res. – Space. V. 98. № 12. P. 21365−21371. 1993. https://doi.org/10.1029/93JA00417
- Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Storm-time electric field distribution in the inner magnetosphere // Geophys. Res. Lett. V. 33. № 22. ID L22102. 2006. https://doi.org/10.1029/2006GL027510
- Paulikas G.A. Precipitation of particles at low and middle latitudes // Rev. Geophys. V. 13. № 5. P. 709−734. 1975. https//doi.org/10.1029/RG013i005p00709
- Parkhomov V.A., Mishin V.V., Borovik L.V. Long-period geomagnetic pulsations cased by the solar wind negative pressure impulse on 22 March 1979 (CDAW-6) // Ann. Geophys. V. 16. № 2. P. 134−139. 1998. https://doi.org/10.1007/s00585-998-0134-6
- Pfaff R., Rowland D., Freudenreich H. et al. Observations of DC electric fields in the low-latitude ionosphere and their variations with local time, longitude, and plasma density during extreme solar minimum // J. Geophys. Res. – Space. V. 115. № 12. ID A12324. 2010. https://doi.org/10.1029/2010JA016023
- Pfaff R., Uribe P., Fourre R. et al. The vector electric field investigation (VEFI) on the C/NOFS satellite. Space Sci. Rev. V. 217. № 8. ID 85. 2021. https://doi.org/10.1007/s11214-021-00859-y
- Pinto O.Jr., Pinto R.C.A., Gonzalez W.D., Gonzalez A.L.C. About the origin of peaks in the spectrum of inner belt electrons // J. Geophys. Res. – Space. V. 96. № 2. P. 1857−1860. 1991. https://doi.org/10.1029/90JA02383
- Rodger C.J., Clilverd M.A., McCormick R.J. Significance of lightning-generated whistlers to inner radiation belt electron lifetimes // J. Geophys. Res. – Space. V. 108. № 12. ID 1462. 2003. https://doi.org/10.1029/2003JA009906
- Rowland D.E., Wygant J.R. Dependence of the largescale, inner magnetospheric electric field on geomagnetic activity // J. Geophys. Res. – Space. V. 103. № 7. P. 14959−14964. 1998. https://doi.org/10.1029/97JA03524
- Sauvaud J.A., Moreau T., Maggiolo R., Treilhou J.-P., Jacquey C., Cros A., Coutelier J., Rouzaud J., Penou E., Gangloff M. High-energy electron detection onboard DEMETER: The IDP spectrometer description and first results on the inner belt // Planet. Space Sci. V. 54. № 5. P. 502−511. 2006. https://doi.org/10.1016/j.pss.2005.10.019
- Selesnick R.S., Su Y.-J., Blake J.B. Control of the innermost electron radiation belt by large-scale electric fields // J. Geophys. Res. – Space. V. 121. № 9. P. 8417–8427. 2016. https://doi.org/10.1002/2016JA022973
- Selesnick R.S., Su Y.-J., Sauvaud J.A. Energetic electrons below the inner radiation belt // J. Geophys. Res. – Space. V. 124. № 7. P. 5421–5440. 2019. https://doi.org/10.1029/2019JA026718
- Shinbori A., Nishimura Y., Ono T., Iizima M., Kumamoto A., Oya H. Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989 // Earth Planets Space. V. 57. № 7. P. 643−659. 2005. https://doi.org./10.1186/BF03351843
- Shinbori A., Ono T., Iizima M., Kumamoto A., Nishimura Y. Enhancements of magnetospheric convection electric field associated with sudden commencements in the inner magnetosphere and plasmasphere regions // Adv. Space Res. V. 38. № 8. P. 1595–1607. 2006. https://doi.org/10.1016/j.asr.2005.05.082
- Shinbori A., Ono T., Iizima M., Kumamoto A. et al. SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere // Earth Planets Space. V. 56. № 2. P. 269−282. 2004. https://doi.org./10.1186/BF03353409
- Su Y.-J., Selesnick R.S., Blake J.B. Formation of the inner electron radiation belt by enhanced large-scale electric fields // J. Geophys. Res. – Space. V. 121. № 9. P. 8508–8522. 2016. https://doi.org/10.1002/2016JA022881
- Suvorova A., Dmitriev A., Chao J.-K., Thomsen M., Yang Y.-H. Necessary conditions for geosynchronous magnetopause crossings // J. Geophys. Res. – Space. V. 110. № 1. ID A01206. 2005. https://doi.org/10.1029/2003JA010079
- Suvorova A.V., Tsai L.C., Dmitriev A.V. On relation between mid-latitude ionospheric ionization and quasi-trapped energetic electrons during 15 December 2006 magnetic storm // Planet. Space Sci. V. 60. № 3. P. 363−369. 2012. https://doi.org/10.1016/j.pss.2011.11.001
- Suvorova A.V., Dmitriev A.V., Tsai L.-C., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Lazutin L.L. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere // J. Geophys. Res. – Space. V. 118. № 7. P. 4672–4695. 2013. https://doi.org/10.1002/jgra.50439
- Suvorova A.V., Huang C.-M., Matsumoto H., Dmitriev A.V., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Tsai L.-C. Low-latitude ionospheric effects of energetic electrons during a recurrent magnetic storm // J. Geophys. Res. – Space. V. 119. № 11. P. 9283−9302. 2014. https://doi.org/10.1002/2014JA020349
- Suvorova A.V., Dmitriev A.V. Radiation aspects of geomagnetic storm impact below the radiation belt / Cyclonic and Geo-magnetic Storms: Predicting Factors, Formation and Environmental Impacts. Ed. V.P. Banks. New York, USA: NOVA Science Publishers. P. 19−76. 2015.
- Suvorova A.V., Dmitriev A.V. On magnetopause inflation under radial IMF // Adv. Space Res. V. 58. № 2. P. 249−256. 2016. https://doi.org/10.1016/j.asr.2015.07.044
- Suvorova A.V. Flux enhancements of >30 keV electrons at low drift shells L <1.2 during last solar cycles // J. Geophys Res. – Space. V. 122. № 12. P. 12274−12287. 2017. https://doi.org/10.1002/2017JA024556
- Suvorova A.V., Dmitriev A.V., Parkhomov V.A. Energetic electron enhancements under the radiation belt (L < 1.2) during a non-storm interval on 1 August 2008 // Ann. Geophys. V. 37. № 6. P. 1223−1241. 2019. https://doi.org/10.5194/angeo-37-1223-2019
- Suvorova A.V. Solar-cycle variations of forbidden energetic electrons enhancements // Universe. V. 9. № 8. ID 374. 2023. https://doi.org/10.3390/universe9080374
- Tsurutani B.T., Hajra R., Echer E., Gjerloev J.W. Extremely intense (SML ≤ −2500 nT) substorms: isolated events that are externally triggered? // Ann. Geophys. V. 33. № 5. P. 519−524. 2015. https://doi.org/10.5194/angeocom-33-519-2015
- Tsurutani B.T., Kamide Y., Arballo J.K., Gonzalez W.D., Lepping R.P. Inerplanetary causes of great and superintense magnetic storms // Phys. Chem. Earth Pt C. V. 24. № 1−3. P. 101−105. 1999. https://doi.org/10.1016/S1464-1917(98)00015-4
- Wygant Y., Mozer F., Temerin M., Blake J., Maynard N., Singer H., Smiddy M. Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes // Geophys. Res. Lett. V. 21. № 16. P. 1739−1742. 1994. hhtps://doi.org/10.1029/94GL00375
- Zong Q.-G., Yue C., Fu S.-Y. Shock induced strong substorms and super substorms: preconditions and associated oxygen ion dynamics // Space Sci. Rev. V. 217. № 3. ID 33. 2021. https://doi.org/10.1007/s11214-021-00806-x
- Goddard Space Flight Center. 25.06.2025. https://cdaweb.gsfc.nasa.gov/
- National Centers for Environmental Information. 25.06.2025. https://www.ncei.noaa.gov/products/poesmetop-space-environment-monitor
- World Data Center for Geomagnetism, Kyoto. 25.06.2025. https://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html
Дополнительные файлы


