Glow discharge treatment of nitrocellulose membranes increases the immunoassay sensitivity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Plasma treatment can make the surfaces of the materials more hydrophilic and improve the surface and adsorption properties. Our research shows that the glow discharge treatment of nitrocellulose membranes improves the adsorption capacity for antibodies by a factor of 15-17 and increases the sensitivity of immunoassay (dot-blotting) performed on the membranes approximatively by an order of magnitude. This feature has been demonstrated for the interleukin-1 beta immunoassay with chemiluminescent detection. Upon glow discharge treatment, the nitrocellulose membranes did not change their structure or chemical composition as can be seen using scanning electron microscopy and IR spectroscopy, respectively. The obtained results can be used to optimize the existing laboratory procedures, especially dot-blotting.

作者简介

P. Petrova

Lomonosov Moscow State University

Moscow, Russia

S. Zamalutdinova

Lomonosov Moscow State University

Moscow, Russia

A. Vnukova

Lomonosov Moscow State University

Moscow, Russia

D. Alekseeva

Lomonosov Moscow State University

Moscow, Russia

D. Bagrov

Lomonosov Moscow State University

Email: bagrov@mail.bio.msu.ru
Moscow, Russia

参考

  1. R. Hawkes, E. Niday, and J. Gordon, Anal. Biochem., 119 (1), 142 (1982).
  2. D. I. Stott, J. Immunoassay, 21 (2-3), 273 (2000).
  3. V. Faoro and G. Stanta, In Guidelines for Molecular Analysis in Archive Tissues, Ed. by G. Stanta (Springer, Berlin, Heidelberg, 2011), pp. 275-276.
  4. S. Zhang, et al., Analyst, 139 (2), 439 (2014).
  5. N. Tsurusawa, J. Chang, M. Namba, et al., J. Clin. Med., 10 (21), 5197 (2021).
  6. S. Watabe, H. Kodama, M. Kaneda, et al., Biophysics (Japan), 10, 49 (2014).
  7. J. Wang, et al., PLoS One, 8 (12). e82888 (2013).
  8. C. F. O. Hoy, et al., Sensing and Bio-Sensing Research, 26, 100304 (2019).
  9. N. Kaneko, et al., Inflamm. Regener., 39 (1). 12 (2019).
  10. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods, 9 (7), 671 (2012).
  11. A. Li, et al., Cytotechnology, 65 (1), 71 (2013).
  12. T. H. Meltzer and M. Jornitz, Am. Pharmaceut. Rev., 6, 44 (2003).
  13. Z. Ashrafi, L. Lucia, and W. Krause, Soft Matter, 15 (45), 9359 (2019).
  14. I. Nikishin, et al., Micron, 145, 103044 (2021).
  15. D. V. Bagrov, et al. Microscopy Res. & Technique, 85 (2), 562 (2022).
  16. O. I. Volokh, et al., Front. Mol. Biosci., 9, 1048117 (2022).
  17. J. G. Dillard and I. M. Spinu, J. Adhesion, 31 (2-4), 137 (1990).
  18. P.-O. Bussiere, J.-L. Gardette, and S. Therias, Polymer Degradation and Stability, 107, 246 (2014).
  19. V. I. Kovalenko, et al., J. Struct. Chem., 34 (4), 540 (1994).
  20. А. М. Сенковенко и др., Биофизика, 67 (3), 555 (2022).
  21. О. Йосихито, Высокомолекуляр. соединения, 30 (9), 1815 (1988).
  22. T. Desmet, et al., Biomacromolecules, 10 (9), 2351 (2009).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##