Glow discharge treatment of nitrocellulose membranes increases the immunoassay sensitivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Plasma treatment can make the surfaces of the materials more hydrophilic and improve the surface and adsorption properties. Our research shows that the glow discharge treatment of nitrocellulose membranes improves the adsorption capacity for antibodies by a factor of 15-17 and increases the sensitivity of immunoassay (dot-blotting) performed on the membranes approximatively by an order of magnitude. This feature has been demonstrated for the interleukin-1 beta immunoassay with chemiluminescent detection. Upon glow discharge treatment, the nitrocellulose membranes did not change their structure or chemical composition as can be seen using scanning electron microscopy and IR spectroscopy, respectively. The obtained results can be used to optimize the existing laboratory procedures, especially dot-blotting.

About the authors

P. A Petrova

Lomonosov Moscow State University

Moscow, Russia

S. V Zamalutdinova

Lomonosov Moscow State University

Moscow, Russia

A. A Vnukova

Lomonosov Moscow State University

Moscow, Russia

D. A Alekseeva

Lomonosov Moscow State University

Moscow, Russia

D. V Bagrov

Lomonosov Moscow State University

Email: bagrov@mail.bio.msu.ru
Moscow, Russia

References

  1. R. Hawkes, E. Niday, and J. Gordon, Anal. Biochem., 119 (1), 142 (1982).
  2. D. I. Stott, J. Immunoassay, 21 (2-3), 273 (2000).
  3. V. Faoro and G. Stanta, In Guidelines for Molecular Analysis in Archive Tissues, Ed. by G. Stanta (Springer, Berlin, Heidelberg, 2011), pp. 275-276.
  4. S. Zhang, et al., Analyst, 139 (2), 439 (2014).
  5. N. Tsurusawa, J. Chang, M. Namba, et al., J. Clin. Med., 10 (21), 5197 (2021).
  6. S. Watabe, H. Kodama, M. Kaneda, et al., Biophysics (Japan), 10, 49 (2014).
  7. J. Wang, et al., PLoS One, 8 (12). e82888 (2013).
  8. C. F. O. Hoy, et al., Sensing and Bio-Sensing Research, 26, 100304 (2019).
  9. N. Kaneko, et al., Inflamm. Regener., 39 (1). 12 (2019).
  10. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods, 9 (7), 671 (2012).
  11. A. Li, et al., Cytotechnology, 65 (1), 71 (2013).
  12. T. H. Meltzer and M. Jornitz, Am. Pharmaceut. Rev., 6, 44 (2003).
  13. Z. Ashrafi, L. Lucia, and W. Krause, Soft Matter, 15 (45), 9359 (2019).
  14. I. Nikishin, et al., Micron, 145, 103044 (2021).
  15. D. V. Bagrov, et al. Microscopy Res. & Technique, 85 (2), 562 (2022).
  16. O. I. Volokh, et al., Front. Mol. Biosci., 9, 1048117 (2022).
  17. J. G. Dillard and I. M. Spinu, J. Adhesion, 31 (2-4), 137 (1990).
  18. P.-O. Bussiere, J.-L. Gardette, and S. Therias, Polymer Degradation and Stability, 107, 246 (2014).
  19. V. I. Kovalenko, et al., J. Struct. Chem., 34 (4), 540 (1994).
  20. А. М. Сенковенко и др., Биофизика, 67 (3), 555 (2022).
  21. О. Йосихито, Высокомолекуляр. соединения, 30 (9), 1815 (1988).
  22. T. Desmet, et al., Biomacromolecules, 10 (9), 2351 (2009).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies