Evaluation of the efficiency of intersystem crossing to a triplet state of fullerene in complexes with amino acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The important photophysical process that determines the efficiency of photosensitizers is saturation of a triplet state by intersystem crossing during light absorption. In the present work, C60 fullerene complexes with amino acids glycine, lysine, methionine and threonine were studied as promising photosensitizers. All these complexes, for which the calculations were done, demonstrate high values of rate constants of transition to triplet states and a high probability of the ability to generate reactive oxygen species through excitation in the visible spectrum. The carboxyl groups of amino acids that are not involved in electronic excitation can be used as the component of specific DNA aptamers for conjugation to photoactive complexes for a tumor-targeting drug delivery system.

About the authors

A. S Buchelnikov

Sevastopol State University

Email: tolybas@rambler.ru
Sevastopol, Russia

P. A Sokolov

Sevastopol State University;Saint-Petersburg State University

Sevastopol, Russia;Saint Petersburg, Russia

R. R Ramasanoff

Sevastopol State University

Sevastopol, Russia

References

  1. M. G. Mokwena, C. A. Kruger, M. T. Ivan, et al., Photodiagn. Photodyn. Ther., 22, 147 (2018).
  2. Y. N. Konan, R. Gurny, and E. Allcmann, J. Photochem. Photobiol. B, 66 (2), 89 (2002).
  3. N. Hodgkinson, C. A. Kruger, and H. Abrahamse, Tumor Biol., 39 (10), 1 (2017).
  4. L. Benov, Med. Princ. Pract., 24 (Suppl. 1), 14 (2015).
  5. H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., Nature, 318 (6042), 162 (1985).
  6. Y. Zhang, B. Wang, R. Zhao, et al., Mater. Sci. Eng. C, 115, 111099 (2020).
  7. M. R. Hamblin, Photochem. Photobiol. Sci., 17 (11), 1515 (2018).
  8. V. V. Sharoyko, S. V. Ageev, N. E. Podolsky, et al., J. Mol. Liq., 323, 114990 (2021).
  9. R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
  10. Q. Liu, L. Xu, X. Zhang, et al., Chem. Asian J., 8 (10), 2370 (2013).
  11. V. V. Sharoyko, O. S. Shemchuk, A. A. Meshcheriakov, et al., Nanomedicine NBM, 40, 102500 (2022).
  12. G. G. Panova, E. B. Serebryakov, K. N. Semenov, et al., J. Nanomater., 2019, 2306518 (2019).
  13. G. Jiang, F. Yin, J. Duan, et al., J. Mater. Sci. Mater. Med., 26 (1), 24 (2015).
  14. M. E. Casida, in Recent Advances in Density Functional Methods. Part I, Ed. by D. P. Chong (World Scientific, Singapore, 1995), Chap. 5, pp. 155-192.
  15. A. D. Becke, J. Chem. Phys., 98 (7), 5648 (1993).
  16. G. A. Petersson, A. Bennett, T. G. Tensfeldt, et al., J. Chem. Phys., 89 (4), 2193 (1988).
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.01 (Gaussian, Inc., Wallingford CT (USA), 2016).
  18. R. H. Xie, G. W. Bryant, L. Jensen, et al., J. Chem. Phys., 118 (19), 8621 (2003).
  19. C. M. Marian, Wiley Interdiscip. Rev.Comput. Mol. Sci., 2 (2), 187 (2012).
  20. S. G. Chiodo and M. Leopoldini, Comput. Phys.Commun., 185 (2), 676 (2014).
  21. R. R. Ramasanoff and P. A. Sokolov, Chem. Phys. Lett., 807, 140076 (2022).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies